
    g                         d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ  ej        e          Z G d	 d
e          Z G d de
          ZdS )zYOLOS model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)loggingc                   X     e Zd ZdZdZddddddddd	d
dgddddddddddddf fd	Z xZS )YolosConfiga  
    This is the configuration class to store the configuration of a [`YolosModel`]. It is used to instantiate a YOLOS
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the YOLOS
    [hustvl/yolos-base](https://huggingface.co/hustvl/yolos-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        image_size (`List[int]`, *optional*, defaults to `[512, 864]`):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        num_detection_tokens (`int`, *optional*, defaults to 100):
            The number of detection tokens.
        use_mid_position_embeddings (`bool`, *optional*, defaults to `True`):
            Whether to use the mid-layer position encodings.
        auxiliary_loss (`bool`, *optional*, defaults to `False`):
            Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
        class_cost (`float`, *optional*, defaults to 1):
            Relative weight of the classification error in the Hungarian matching cost.
        bbox_cost (`float`, *optional*, defaults to 5):
            Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
        giou_cost (`float`, *optional*, defaults to 2):
            Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
        bbox_loss_coefficient (`float`, *optional*, defaults to 5):
            Relative weight of the L1 bounding box loss in the object detection loss.
        giou_loss_coefficient (`float`, *optional*, defaults to 2):
            Relative weight of the generalized IoU loss in the object detection loss.
        eos_coefficient (`float`, *optional*, defaults to 0.1):
            Relative classification weight of the 'no-object' class in the object detection loss.

    Example:

    ```python
    >>> from transformers import YolosConfig, YolosModel

    >>> # Initializing a YOLOS hustvl/yolos-base style configuration
    >>> configuration = YolosConfig()

    >>> # Initializing a model (with random weights) from the hustvl/yolos-base style configuration
    >>> model = YolosModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```yolosi      i   gelug        g{Gz?g-q=i   i`     r   Td   F         g?c                 n    t                      j        di | || _        || _        || _        || _        || _        || _        || _        || _	        |	| _
        |
| _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        d S )N )super__init__hidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_eps
image_size
patch_sizenum_channelsqkv_biasnum_detection_tokensuse_mid_position_embeddingsauxiliary_loss
class_cost	bbox_cost	giou_costbbox_loss_coefficientgiou_loss_coefficienteos_coefficient)selfr   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   kwargs	__class__s                           i/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/yolos/configuration_yolos.pyr   zYolosConfig.__init__h   s    4 	""6"""&!2#6 !2$#6 ,H)!2,$$( $8!+F(,$""%:"%:".    )__name__
__module____qualname____doc__
model_typer   __classcell__)r1   s   @r2   r   r      s        E EN J %(: $(/3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/ 3/r3   r   c                       e Zd Z ej        d          Zedeeee	ef         f         fd            Z
edefd            Zede	fd            ZdS )YolosOnnxConfigz1.11returnc                 0    t          ddddddfg          S )Npixel_valuesbatchr$   heightwidth)r   r   r   r   r   r/   s    r2   inputszYolosOnnxConfig.inputs   s.    WHQX!Y!YZ
 
 	
r3   c                     dS )Ng-C6?r   rB   s    r2   atol_for_validationz#YolosOnnxConfig.atol_for_validation   s    tr3   c                     dS )Nr   r   rB   s    r2   default_onnx_opsetz"YolosOnnxConfig.default_onnx_opset   s    rr3   N)r4   r5   r6   r   parsetorch_onnx_minimum_versionpropertyr   strintrC   floatrE   rG   r   r3   r2   r;   r;      s        !.v!6!6
WS#X%6 67 
 
 
 X
 U    X C    X  r3   r;   N)r7   collectionsr   typingr   	packagingr   configuration_utilsr   onnxr	   utilsr
   
get_loggerr4   loggerr   r;   r   r3   r2   <module>rV      s       # # # # # #             3 3 3 3 3 3             
	H	%	%}/ }/ }/ }/ }/" }/ }/ }/@    j     r3   