
    g^                     p    d Z ddlmZ ddlmZ ddlmZmZ  ej        e	          Z
 G d dee          ZdS )z&Swinv2 Transformer model configuration   )PretrainedConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indicesc                   f     e Zd ZdZdZdddZdddd	g d
g ddg dddddddddddddf fd	Z xZS )Swinv2Configa
  
    This is the configuration class to store the configuration of a [`Swinv2Model`]. It is used to instantiate a Swin
    Transformer v2 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Swin Transformer v2
    [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 4):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        embed_dim (`int`, *optional*, defaults to 96):
            Dimensionality of patch embedding.
        depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`):
            Depth of each layer in the Transformer encoder.
        num_heads (`list(int)`, *optional*, defaults to `[3, 6, 12, 24]`):
            Number of attention heads in each layer of the Transformer encoder.
        window_size (`int`, *optional*, defaults to 7):
            Size of windows.
        pretrained_window_sizes (`list(int)`, *optional*, defaults to `[0, 0, 0, 0]`):
            Size of windows during pretraining.
        mlp_ratio (`float`, *optional*, defaults to 4.0):
            Ratio of MLP hidden dimensionality to embedding dimensionality.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether or not a learnable bias should be added to the queries, keys and values.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings and encoder.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        drop_path_rate (`float`, *optional*, defaults to 0.1):
            Stochastic depth rate.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
            `"selu"` and `"gelu_new"` are supported.
        use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
            Whether or not to add absolute position embeddings to the patch embeddings.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        encoder_stride (`int`, *optional*, defaults to 32):
            Factor to increase the spatial resolution by in the decoder head for masked image modeling.
        out_features (`List[str]`, *optional*):
            If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
            (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
            corresponding stages. If unset and `out_indices` is unset, will default to the last stage.
        out_indices (`List[int]`, *optional*):
            If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
            many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
            If unset and `out_features` is unset, will default to the last stage.

    Example:

    ```python
    >>> from transformers import Swinv2Config, Swinv2Model

    >>> # Initializing a Swinv2 microsoft/swinv2-tiny-patch4-window8-256 style configuration
    >>> configuration = Swinv2Config()

    >>> # Initializing a model (with random weights) from the microsoft/swinv2-tiny-patch4-window8-256 style configuration
    >>> model = Swinv2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```swinv2	num_heads
num_layers)num_attention_headsnum_hidden_layers      r   `   )   r      r   )r   r            )    r   r   r   g      @Tg        g?geluFg{Gz?gh㈵>    Nc                 `    t                      j        di | || _        || _        || _        || _        || _        t          |          | _        || _	        || _
        || _        |	| _        |
| _        || _        || _        || _        || _        || _        || _        || _        || _        dgd t-          dt          |          dz             D             z   | _        t1          ||| j                  \  | _        | _        t7          |dt          |          dz
  z  z            | _        d S )Nstemc                     g | ]}d | S )stage ).0idxs     k/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/swinv2/configuration_swinv2.py
<listcomp>z)Swinv2Config.__init__.<locals>.<listcomp>   s    &Z&Z&Z}s}}&Z&Z&Z       )out_featuresout_indicesstage_namesr   r   )super__init__
image_size
patch_sizenum_channels	embed_dimdepthslenr   r
   window_sizepretrained_window_sizes	mlp_ratioqkv_biashidden_dropout_probattention_probs_dropout_probdrop_path_rate
hidden_actuse_absolute_embeddingslayer_norm_epsinitializer_rangeencoder_strideranger&   r   _out_features_out_indicesinthidden_size)selfr)   r*   r+   r,   r-   r
   r/   r0   r1   r2   r3   r4   r5   r6   r7   r9   r8   r:   r$   r%   kwargs	__class__s                         r    r(   zSwinv2Config.__init__i   s?   0 	""6"""$$("f++"&'>$" #6 ,H),$'>$,!2,"8&Z&ZaVWX@Y@Y&Z&Z&ZZ0Z%;DL\1
 1
 1
-D-
 y1Vq+AABBr"   )__name__
__module____qualname____doc__
model_typeattribute_mapr(   __classcell__)rB   s   @r    r   r      s        F FP J  +) M || .. ,%( %+3C 3C 3C 3C 3C 3C 3C 3C 3C 3Cr"   r   N)rF   configuration_utilsr   utilsr   utils.backbone_utilsr   r   
get_loggerrC   loggerr   r   r"   r    <module>rO      s    - , 3 3 3 3 3 3       c c c c c c c c 
	H	%	%CC CC CC CC CC&(8 CC CC CC CC CCr"   