
    g                     ^    d Z ddlmZ ddlmZ  ej        e          Z G d de          ZdS )z'Swin2SR Transformer model configuration   )PretrainedConfig)loggingc                   f     e Zd ZdZdZddddZddd	d
dg dg dddddddddddddddf fd	Z xZS )Swin2SRConfiga  
    This is the configuration class to store the configuration of a [`Swin2SRModel`]. It is used to instantiate a Swin
    Transformer v2 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Swin Transformer v2
    [caidas/swin2sr-classicalsr-x2-64](https://huggingface.co/caidas/swin2sr-classicalsr-x2-64) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        image_size (`int`, *optional*, defaults to 64):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 1):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        num_channels_out (`int`, *optional*, defaults to `num_channels`):
            The number of output channels. If not set, it will be set to `num_channels`.
        embed_dim (`int`, *optional*, defaults to 180):
            Dimensionality of patch embedding.
        depths (`list(int)`, *optional*, defaults to `[6, 6, 6, 6, 6, 6]`):
            Depth of each layer in the Transformer encoder.
        num_heads (`list(int)`, *optional*, defaults to `[6, 6, 6, 6, 6, 6]`):
            Number of attention heads in each layer of the Transformer encoder.
        window_size (`int`, *optional*, defaults to 8):
            Size of windows.
        mlp_ratio (`float`, *optional*, defaults to 2.0):
            Ratio of MLP hidden dimensionality to embedding dimensionality.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether or not a learnable bias should be added to the queries, keys and values.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings and encoder.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        drop_path_rate (`float`, *optional*, defaults to 0.1):
            Stochastic depth rate.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
            `"selu"` and `"gelu_new"` are supported.
        use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
            Whether or not to add absolute position embeddings to the patch embeddings.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        upscale (`int`, *optional*, defaults to 2):
            The upscale factor for the image. 2/3/4/8 for image super resolution, 1 for denoising and compress artifact
            reduction
        img_range (`float`, *optional*, defaults to 1.0):
            The range of the values of the input image.
        resi_connection (`str`, *optional*, defaults to `"1conv"`):
            The convolutional block to use before the residual connection in each stage.
        upsampler (`str`, *optional*, defaults to `"pixelshuffle"`):
            The reconstruction reconstruction module. Can be 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None.

    Example:

    ```python
    >>> from transformers import Swin2SRConfig, Swin2SRModel

    >>> # Initializing a Swin2SR caidas/swin2sr-classicalsr-x2-64 style configuration
    >>> configuration = Swin2SRConfig()

    >>> # Initializing a model (with random weights) from the caidas/swin2sr-classicalsr-x2-64 style configuration
    >>> model = Swin2SRModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```swin2sr	embed_dim	num_heads
num_layers)hidden_sizenum_attention_headsnum_hidden_layers@      r   N   )   r   r   r   r   r      g       @Tg        g?geluFg{Gz?gh㈵>   g      ?1convpixelshufflec                     t                      j        di | || _        || _        || _        ||n|| _        || _        || _        t          |          | _	        || _
        || _        |	| _        |
| _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        d S )N )super__init__
image_size
patch_sizenum_channelsnum_channels_outr   depthslenr
   r	   window_size	mlp_ratioqkv_biashidden_dropout_probattention_probs_dropout_probdrop_path_rate
hidden_actuse_absolute_embeddingslayer_norm_epsinitializer_rangeupscale	img_rangeresi_connection	upsampler)selfr   r   r   r   r   r   r	   r!   r"   r#   r$   r%   r&   r'   r(   r*   r)   r+   r,   r-   r.   kwargs	__class__s                          m/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/swin2sr/configuration_swin2sr.pyr   zSwin2SRConfig.__init__g   s    2 	""6"""$$(0@0HN^"f++"&" #6 ,H),$'>$,!2"."    )__name__
__module____qualname____doc__
model_typeattribute_mapr   __classcell__)r1   s   @r2   r   r      s        D DL J #*) M !!!$$$%( % -0# 0# 0# 0# 0# 0# 0# 0# 0# 0#r3   r   N)	r7   configuration_utilsr   utilsr   
get_loggerr4   loggerr   r   r3   r2   <module>r?      s    . - 3 3 3 3 3 3       
	H	%	%# # # # #$ # # # # #r3   