
    gm<              
          d Z ddlmZmZmZ ddlZddlmZ ddl	m
Z
 ddlmZmZmZmZ ddlmZmZ d	d
lmZ  G d ded          Z G d ded          Zdee         dedeee                  fdZdeeee                           deee                  dededej        f
dZdedededefdZ G d de          ZdS ) zProcessor class for Mllama.    )ListOptionalUnionN   )BatchFeature)
ImageInput)ImagesKwargsProcessingKwargsProcessorMixinUnpack)PreTokenizedInput	TextInput   )make_list_of_imagesc                   &    e Zd ZU ee         ed<   dS )MllamaImagesKwargsmax_image_tilesN)__name__
__module____qualname__r   int__annotations__     h/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/mllama/processing_mllama.pyr   r   "   s"         c]"""""r   r   F)totalc                   &    e Zd ZU eed<   dddiiZdS )MllamaProcessorKwargsimages_kwargsimage_kwargsr      N)r   r   r   r   r   	_defaultsr   r   r   r   r   &   s2         %%%% 	q
IIIr   r   	input_idsimage_token_idreturnc                    fdt          |           D             }t          |          dk    rg S t          |          dk    r|d         dggS d t          |dd         |dd                   D             }|                    |d         t          |           g           |d         d         }|ddd         D ]$}|d         |d         dz
  k    r||d<   |d         }%|S )a  
    Generate a cross-attention token mask for image tokens in the input sequence.

    This function identifies the positions of image tokens in the input sequence and creates
    a mask that defines which subsequent tokens each image token should attend to.

    Args:
        input_ids (List[int]): A list of token ids representing the input sequence.
        image_token_id (int): The id of the token used to represent images in the sequence.

    Returns:
        List[List[int]]: A list of [start, end] pairs, where each pair represents the range
        of tokens an image token should attend to.

    Notes:
        - If no image tokens are present, an empty list is returned.
        - For a single image token, it attends to all subsequent tokens until the end of the sequence.
        - For multiple image tokens, each attends to tokens up to the next image token or the end of the sequence.
        - Consecutive image tokens are treated as a group and attend to all subsequent tokens together.
    c                 &    g | ]\  }}|k    |S r   r   ).0itokenr$   s      r   
<listcomp>z2get_cross_attention_token_mask.<locals>.<listcomp>F   s(    ___81euP^G^G^QG^G^G^r   r   r   c                     g | ]	\  }}||g
S r   r   )r(   loc1loc2s      r   r+   z2get_cross_attention_token_mask.<locals>.<listcomp>O   s     nnnZT4T4Lnnnr   N)	enumeratelenzipappend)r#   r$   image_token_locationsvision_maskslast_mask_endvision_masks    `    r   get_cross_attention_token_maskr8   0   s"   , `___y/C/C___
 !!Q&&	  !!Q&&&q)2.//nn37LSbS7QShijikikSl3m3mnnnL .r2C	NNCDDD
 !$Q'M#DDbD) ' 'q>[^a///*KN#Ar   cross_attention_token_mask	num_tilesmax_num_tileslengthc           	         t          |           }t          d | D                       }t          j        ||||ft          j                  }t          t          | |                    D ]k\  }\  }}	t          t          ||	                    D ]E\  }
\  }}t          |          dk    r*|\  }}t          ||          }|dk    r|}d|||||
d|f<   Fl|S )a  
    Convert the cross attention mask indices to a cross attention mask 4D array.

    This function takes a sparse representation of cross attention masks and converts it to a dense 4D numpy array.
    The sparse representation is a nested list structure that defines attention ranges for each image in each batch item.

    Args:
        cross_attention_token_mask (List[List[List[int]]]): A nested list structure where:
            - The outer list represents the batch dimension.
            - The middle list represents different images within each batch item.
            - The inner list contains pairs of integers [start, end] representing token ranges for each image.
        num_tiles (List[List[int]]): A nested list structure specifying the number of tiles for each image in each batch item.
        max_num_tiles (int): The maximum possible number of tiles.
        length (int): The total sequence length of the input.

    Returns:
        np.ndarray: A 4D numpy array of shape (batch_size, length, max_num_images, max_num_tiles)
            The array contains `1` where attention is allowed and `0` where it is not.

    Note:
        - Special handling is done for cases where the end token is -1, which is interpreted as attending to the end of the sequence.
    c                 ,    g | ]}t          |          S r   r1   )r(   maskss     r   r+   z@convert_sparse_cross_attention_mask_to_dense.<locals>.<listcomp>~   s    MMM#e**MMMr   )shapedtype   r,   r   N)r1   maxnpzerosint64r0   r2   min)r9   r:   r;   r<   
batch_sizemax_num_imagescross_attention_mask
sample_idxsample_maskssample_num_tilesmask_idx	locationsmask_num_tilesstartends                  r   ,convert_sparse_cross_attention_mask_to_denserT   `   s   : /00JMM2LMMMNNN86>=Ah  
 9B#F`bkBlBl8m8m [ [4
4\#35>s<Qa?b?b5c5c 	[ 	[1H1y.9~~""&
s#v&&"99 CYZ$ZsHo~o%UV	[  r   prompt	bos_tokenimage_tokenc                     || v r| S d}|                      |          r1| t          |          d         } |dz  }|                      |          1||z   | |  S )a\  
    Builds a string from the input prompt by adding `bos_token` if not already present.

    Args:
        prompt (`str`):
            The input prompt string.
        bos_token (`str`):
            The beginning of sentence token to be added.
        image_token (`str`):
            The image token used to identify the start of an image sequence.

    Returns:
        str: The modified prompt string with the `bos_token` added if necessary.

    Examples:
        >>> build_string_from_input("Hello world", "<begin_of_text>", "<|image|>")
        '<begin_of_text>Hello world'

        >>> build_string_from_input("<|image|>Hello world", "<begin_of_text>", "<|image|>")
        '<|image|><begin_of_text>Hello world'

        >>> build_string_from_input("<begin_of_text>Hello world", "<begin_of_text>", "<|image|>")
        '<begin_of_text>Hello world'
    r   Nr   )
startswithr1   )rU   rV   rW   num_image_tokens_on_starts       r   build_string_from_inputr[      s    4 F !


K
(
( 'K((**+!Q&! 

K
(
( ' 55JyJ&JJJr   c                        e Zd ZdZddgZdZdZ fdZ	 	 	 	 ddee	         d	ee
eeee         ee         f                  d
ee         defdZd Zd Zed             Z xZS )MllamaProcessoraw  
    Constructs a Mllama processor which wraps [`MllamaImageProcessor`] and
    [`PretrainedTokenizerFast`] into a single processor that inherits both the image processor and
    tokenizer functionalities. See the [`~MllamaProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
    information.
    The preferred way of passing kwargs is as a dictionary per modality, see usage example below.
        ```python
        from transformers import MllamaProcessor
        from PIL import Image

        processor = MllamaProcessor.from_pretrained("meta-llama/Llama-3.2-11B-Vision")

        processor(
            images=your_pil_image,
            text=["<|image|>If I had to write a haiku for this one"],
            images_kwargs = {"size": {"height": 448, "width": 448}},
            text_kwargs = {"padding": "right"},
            common_kwargs = {"return_tensors": "pt"},
        )
        ```

    Args:
        image_processor ([`MllamaImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`]):
            The tokenizer is a required input.

    image_processor	tokenizerMllamaImageProcessorPreTrainedTokenizerFastc                    d| _         |                    | j                   | _        d| _        |                    | j                  | _        |j        | _        |j        | _        t                                          ||           d S )Nz	<|image|>z<|python_tag|>)	rW   convert_tokens_to_idsr$   python_tokenpython_token_idrV   chat_templatesuper__init__)selfr^   r_   	__class__s      r   rh   zMllamaProcessor.__init__   sz    &'==d>NOO,(>>t?PQQ",&4)44444r   Nimagestextkwargsr%   c           
           ||t          d            j        t          fd j        j        i|}|d         }|d         }|d         }	i }
|t          |t                    r|g}nDt          |t          t          f          rt          d |D                       st          d           fd	|D             } fd
|D             }|
                    dd          }  j        |fi |}|
                    |           dg}|t          |          }d |D             }|t          d |D                       r(t          d |D                       st          d          t          |          t          |          k    rA|t          d          t          dt          |           dt          |           d          |8  j        |fi |}|
                    d          }|
                    |           |U|S fd|d         D             }t!          || j        j        t%          d |d         D                                 }||
d<   |	
                    dd          }t'          |
|          }|S )a&	  
        Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
        arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` arguments to
        MllamaImageProcessor's [`~MllamaImageProcessor.__call__`] if `images` is not `None`. Please refer
        to the docstring of the above two methods for more information.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                    - `'tf'`: Return TensorFlow `tf.constant` objects.
                    - `'pt'`: Return PyTorch `torch.Tensor` objects.
                    - `'np'`: Return NumPy `np.ndarray` objects.
                    - `'jax'`: Return JAX `jnp.ndarray` objects.
        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            TODO: add aspect_ratio_ids and aspect_ratio_mask and cross_attention_mask
        Nz'You must specify either text or images.tokenizer_init_kwargstext_kwargsr   common_kwargsc              3   @   K   | ]}t          |t                    V  d S N)
isinstancestr)r(   ts     r   	<genexpr>z+MllamaProcessor.__call__.<locals>.<genexpr>  s-      =_=_UVjC>P>P=_=_=_=_=_=_r   zAInvalid input text. Please provide a string, or a list of stringsc                 D    g | ]}|                     j                  S r   )countrW   )r(   rv   ri   s     r   r+   z,MllamaProcessor.__call__.<locals>.<listcomp>  s(    HHHa(8 9 9HHHr   c                 F    g | ]}t          |j        j                  S r   )r[   rV   rW   )r(   	text_itemri   s     r   r+   z,MllamaProcessor.__call__.<locals>.<listcomp>  s,    ooo]f+It~tGWXXooor   padding_sider   c                 ,    g | ]}t          |          S r   r?   )r(   samples     r   r+   z,MllamaProcessor.__call__.<locals>.<listcomp>#  s    !C!C!C&#f++!C!C!Cr   c              3   "   K   | ]
}|d k    V  dS r   Nr   r(   	batch_imgs     r   rw   z+MllamaProcessor.__call__.<locals>.<genexpr>&  s&      DDi9>DDDDDDr   c              3   "   K   | ]
}|d k    V  dS r   r   r   s     r   rw   z+MllamaProcessor.__call__.<locals>.<genexpr>&  s?       Q Q#,	QQ Q Q Q Q Qr   zaIf a batch of text is provided, there should be either no images or at least one image per samplez@No image were provided, but there are image tokens in the promptzThe number of image token (z:) should be the same as in the number of provided images ()r:   c                 :    g | ]}t          |j                  S r   )r8   r$   )r(   	token_idsri   s     r   r+   z,MllamaProcessor.__call__.<locals>.<listcomp>;  s4     * * *S\.y$:MNN* * *r   r#   c              3   4   K   | ]}t          |          V  d S rs   r?   )r(   r#   s     r   rw   z+MllamaProcessor.__call__.<locals>.<genexpr>B  s(      QQi3y>>QQQQQQr   )r:   r;   r<   rK   return_tensors)datatensor_type)
ValueError_merge_kwargsr   r_   init_kwargsrt   ru   listtupleallpopupdater   anysumr^   rT   r   rD   r   )ri   rk   rl   audiovideosrm   output_kwargsrp   r   rq   r   n_images_in_text_encodingn_images_in_imagesimage_featuresr:   r9   rK   r   batch_features   `                    r   __call__zMllamaProcessor.__call__   s   N <FNFGGG**!
 
"&."<
 
 
 $M2%o6%o6$$$ fv e}55 f#=_=_Z^=_=_=_:_:_ f !deeeHHHH4HHHoooojnoooD55A%t~d::k::HKK!!!S(00F!C!CF!C!C!CDD3CDDDDD S Q Q0@Q Q Q N N  !w   %&&#.>*?*???>$%ghhh$ bc:J6K6K  b  b  HK  L^  H_  H_  b  b  b   1T1&JJMJJN&**;77IKK''' $"2* * * *`hit`u* * *& $P*#"2BQQ8K;PQQQQQ	$ $ $  ,@D'(&**+;TBB$$NKKKr   c                 &     | j         j        |i |S )z
        This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r_   batch_decoderi   argsrm   s      r   r   zMllamaProcessor.batch_decodeK  s    
 +t~*D;F;;;r   c                 &     | j         j        |i |S )z
        This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r_   decoder   s      r   r   zMllamaProcessor.decodeR  s    
 %t~$d5f555r   c                 ^    | j         j        }| j        j        }t          ||z   dgz             S )NrK   )r_   model_input_namesr^   r   )ri   tokenizer_input_namesimage_processor_input_namess      r   r   z!MllamaProcessor.model_input_namesY  s7     $ @&*&:&L#),GGKaJbbcccr   )NNNN)r   r   r   __doc__
attributesimage_processor_classtokenizer_classrh   r   r   r   r   r   r   r   r   r   r   r   r   propertyr   __classcell__)rj   s   @r   r]   r]      s        : $[1J2/O5 5 5 5 5 (,hli i$i uY(94	?DQbLccdei ./i 
i i i iV< < <6 6 6 d d Xd d d d dr   r]   )r   typingr   r   r   numpyrE   feature_extraction_utilsr   image_utilsr   processing_utilsr	   r
   r   r   tokenization_utils_baser   r   image_processing_mllamar   r   r   r   r8   ndarrayrT   ru   r[   r]   r   r   r   <module>r      s4    " ! ( ( ( ( ( ( ( ( ( (     4 4 4 4 4 4 % % % % % % V V V V V V V V V V V V        9 8 8 8 8 8# # # # #U # # # #    ,E    -d3i - -QUVZ[^V_Q` - - - -`-  $T$s)_ 5- DI-  -  	- 
 Z-  -  -  - `"KC "KC "Kc "Kc "K "K "K "KJhd hd hd hd hdn hd hd hd hd hdr   