
    g                     ^    d Z ddlmZ ddlmZ  ej        e          Z G d de          ZdS )zMixtral model configuration   )PretrainedConfig)loggingc                   \     e Zd ZdZdZdgZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )MixtralConfiga  
    This is the configuration class to store the configuration of a [`MixtralModel`]. It is used to instantiate an
    Mixtral model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Mixtral-7B-v0.1 or Mixtral-7B-Instruct-v0.1.

    [mixtralai/Mixtral-8x7B](https://huggingface.co/mixtralai/Mixtral-8x7B)
    [mixtralai/Mixtral-7B-Instruct-v0.1](https://huggingface.co/mixtralai/Mixtral-7B-Instruct-v0.1)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`MixtralModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 14336):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
            The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
            allows sequence of up to 4096*32 tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 1000000.0):
            The base period of the RoPE embeddings.
        sliding_window (`int`, *optional*):
            Sliding window attention window size. If not specified, will default to `4096`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        num_experts_per_tok (`int`, *optional*, defaults to 2):
            The number of experts to route per-token, can be also interpreted as the `top-k` routing
            parameter
        num_local_experts (`int`, *optional*, defaults to 8):
            Number of experts per Sparse MLP layer.
        output_router_logits (`bool`, *optional*, defaults to `False`):
            Whether or not the router logits should be returned by the model. Enabeling this will also
            allow the model to output the auxiliary loss. See [here]() for more details
        router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
            The aux loss factor for the total loss.
        router_jitter_noise (`float`, *optional*, defaults to 0.0):
            Amount of noise to add to the router.

    ```python
    >>> from transformers import MixtralModel, MixtralConfig

    >>> # Initializing a Mixtral 7B style configuration
    >>> configuration = MixtralConfig()

    >>> # Initializing a model from the Mixtral 7B style configuration
    >>> model = MixtralModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```mixtralpast_key_values }      8         silu   {Gz?h㈵>TN      F    .A        MbP?c                 V   || _         || _        || _        || _        || _        || _        || _        ||}|| _        || _        |	| _	        |
| _
        || _        || _        || _        || _        || _        || _        || _        || _         t'                      j        d||||d| d S )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headssliding_windownum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetaattention_dropoutnum_experts_per_toknum_local_expertsoutput_router_logitsrouter_aux_loss_coefrouter_jitter_noisesuper__init__)selfr   r   r    r!   r"   r$   r%   r   r&   r'   r(   r   r   r   r   r)   r#   r*   r+   r,   r-   r.   r/   kwargs	__class__s                            m/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/mixtral/configuration_mixtral.pyr1   zMixtralConfig.__init__o   s    6 %'>$&!2!2#6 , &"5#6 $!2("$!2#6 !2$8!$8!#6  	
%%% 3		
 	

 	
 	
 	
 	
 	
    )r	   r
   r   r   r   r   r   r   r   r   TNr   r   Fr   Nr   r   r   Fr   r   )__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencer1   __classcell__)r4   s   @r5   r   r      s        Q Qf J#4"5  )!""1:
 :
 :
 :
 :
 :
 :
 :
 :
 :
r6   r   N)	r:   configuration_utilsr   utilsr   
get_loggerr7   loggerr   r   r6   r5   <module>rB      s    " ! 3 3 3 3 3 3       
	H	%	%Q
 Q
 Q
 Q
 Q
$ Q
 Q
 Q
 Q
 Q
r6   