
    g                     ^    d Z ddlmZ ddlmZ  ej        e          Z G d de          ZdS )z&Funnel Transformer model configuration   )PretrainedConfig)loggingc                        e Zd ZdZdZdddZdg ddd	d
dddddddddddddddf fd	Zed             Zej	        d             Zed             Z
e
j	        d             Z
 xZS )FunnelConfiga  
    This is the configuration class to store the configuration of a [`FunnelModel`] or a [`TFBertModel`]. It is used to
    instantiate a Funnel Transformer model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the Funnel
    Transformer [funnel-transformer/small](https://huggingface.co/funnel-transformer/small) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the Funnel transformer. Defines the number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`FunnelModel`] or [`TFFunnelModel`].
        block_sizes (`List[int]`, *optional*, defaults to `[4, 4, 4]`):
            The sizes of the blocks used in the model.
        block_repeats (`List[int]`, *optional*):
            If passed along, each layer of each block is repeated the number of times indicated.
        num_decoder_layers (`int`, *optional*, defaults to 2):
            The number of layers in the decoder (when not using the base model).
        d_model (`int`, *optional*, defaults to 768):
            Dimensionality of the model's hidden states.
        n_head (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        d_head (`int`, *optional*, defaults to 64):
            Dimensionality of the model's heads.
        d_inner (`int`, *optional*, defaults to 3072):
            Inner dimension in the feed-forward blocks.
        hidden_act (`str` or `callable`, *optional*, defaults to `"gelu_new"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability used between the two layers of the feed-forward blocks.
        initializer_range (`float`, *optional*, defaults to 0.1):
            The upper bound of the *uniform initializer* for initializing all weight matrices in attention layers.
        initializer_std (`float`, *optional*):
            The standard deviation of the *normal initializer* for initializing the embedding matrix and the weight of
            linear layers. Will default to 1 for the embedding matrix and the value given by Xavier initialization for
            linear layers.
        layer_norm_eps (`float`, *optional*, defaults to 1e-09):
            The epsilon used by the layer normalization layers.
        pooling_type (`str`, *optional*, defaults to `"mean"`):
            Possible values are `"mean"` or `"max"`. The way pooling is performed at the beginning of each block.
        attention_type (`str`, *optional*, defaults to `"relative_shift"`):
            Possible values are `"relative_shift"` or `"factorized"`. The former is faster on CPU/GPU while the latter
            is faster on TPU.
        separate_cls (`bool`, *optional*, defaults to `True`):
            Whether or not to separate the cls token when applying pooling.
        truncate_seq (`bool`, *optional*, defaults to `True`):
            When using `separate_cls`, whether or not to truncate the last token when pooling, to avoid getting a
            sequence length that is not a multiple of 2.
        pool_q_only (`bool`, *optional*, defaults to `True`):
            Whether or not to apply the pooling only to the query or to query, key and values for the attention layers.
    funneld_modeln_head)hidden_sizenum_attention_headsi:w  )   r   r   N   i      @   i   gelu_newg?g        g&.>meanrelative_shiftTc                 "   || _         || _        |dgt          |          z  n|| _        t          |          t          | j                  k    s
J d            || _        || _        || _        || _        || _        |	| _	        |
| _
        || _        || _        || _        || _        || _        |dv sJ d| d            || _        |dv sJ d| d            || _        || _        || _        || _         t+                      j        di | d S )	N   z>`block_sizes` and `block_repeats` should have the same length.)r   maxzGot z< for `pooling_type` but only 'mean' and 'max' are supported.)r   
factorizedzO for `attention_type` but only 'relative_shift' and 'factorized' are supported. )
vocab_sizeblock_sizeslenblock_repeatsnum_decoder_layersr   r	   d_headd_inner
hidden_acthidden_dropoutattention_dropoutactivation_dropoutinitializer_rangeinitializer_stdlayer_norm_epspooling_typeattention_typeseparate_clstruncate_seqpool_q_onlysuper__init__)selfr   r   r   r   r   r	   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   kwargs	__class__s                         k/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/funnel/configuration_funnel.pyr,   zFunnelConfig.__init__Y   s   0 %&7D7LaS3{#3#333R_;3$
 $
 
 
 
K
 
 
 #5$,!2"4!2.,  
 
 
 
 ],\\\
 
 
 ) "
 
 
 
 r.qqq
 
 
 -((&""6"""""    c                 *    t          | j                  S N)sumr   r-   s    r0   num_hidden_layerszFunnelConfig.num_hidden_layers       4#$$$r1   c                      t          d          )NzYThis model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.NotImplementedErrorr-   values     r0   r6   zFunnelConfig.num_hidden_layers   s    !g
 
 	
r1   c                 *    t          | j                  S r3   )r   r   r5   s    r0   
num_blockszFunnelConfig.num_blocks   r7   r1   c                      t          d          )NzRThis model does not support the setting of `num_blocks`. Please set `block_sizes`.r9   r;   s     r0   r>   zFunnelConfig.num_blocks   s    !"vwwwr1   )__name__
__module____qualname____doc__
model_typeattribute_mapr,   propertyr6   setterr>   __classcell__)r/   s   @r0   r   r      s       8 8t J ' M II'+8# 8# 8# 8# 8# 8#t % % X% 
 
 

 % % X% x x x x x x xr1   r   N)	rC   configuration_utilsr   utilsr   
get_loggerr@   loggerr   r   r1   r0   <module>rM      s    - , 3 3 3 3 3 3       
	H	%	%Kx Kx Kx Kx Kx# Kx Kx Kx Kx Kxr1   