
    g                        d dl mZmZ d dlZddlmZmZmZm	Z	m
Z
 ddlmZmZ  e            rd dlmZ ddlmZ  e            rdd	lmZ  e	j        e          Z e ed
                     G d de                      ZdS )    )ListUnionN   )add_end_docstringsis_torch_availableis_vision_availableloggingrequires_backends   )Pipelinebuild_pipeline_init_args)Image)
load_image)&MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMEST)has_image_processorc                        e Zd ZdZ fdZd Zdeeee         ded         f         deded         f         f fdZ	d Z
dd
Zd Z xZS )ImageToImagePipelineao  
    Image to Image pipeline using any `AutoModelForImageToImage`. This pipeline generates an image based on a previous
    image input.

    Example:

    ```python
    >>> from PIL import Image
    >>> import requests

    >>> from transformers import pipeline

    >>> upscaler = pipeline("image-to-image", model="caidas/swin2SR-classical-sr-x2-64")
    >>> img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
    >>> img = img.resize((64, 64))
    >>> upscaled_img = upscaler(img)
    >>> img.size
    (64, 64)

    >>> upscaled_img.size
    (144, 144)
    ```

    This image to image pipeline can currently be loaded from [`pipeline`] using the following task identifier:
    `"image-to-image"`.

    See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=image-to-image).
    c                      t                      j        |i | t          | d           |                     t                     d S )Nvision)super__init__r
   check_model_typer   )selfargskwargs	__class__s      a/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/pipelines/image_to_image.pyr   zImageToImagePipeline.__init__F   sJ    $)&)))$)))DEEEEE    c                 T    i }i }i }d|v r|d         |d<   d|v r|d         |d<   |||fS )Ntimeout	head_mask )r   r   preprocess_paramspostprocess_paramsforward_paramss        r   _sanitize_parametersz)ImageToImagePipeline._sanitize_parametersK   sV    +1)+<i(&  *0*=N;' .2DDDr   imageszImage.Imagereturnc                 8     t                      j        |fi |S )a  
        Transform the image(s) passed as inputs.

        Args:
            images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
                The pipeline handles three types of images:

                - A string containing a http link pointing to an image
                - A string containing a local path to an image
                - An image loaded in PIL directly

                The pipeline accepts either a single image or a batch of images, which must then be passed as a string.
                Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL
                images.
            timeout (`float`, *optional*, defaults to None):
                The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and
                the call may block forever.

        Return:
            An image (Image.Image) or a list of images (List["Image.Image"]) containing result(s). If the input is a
            single image, the return will be also a single image, if the input is a list of several images, it will
            return a list of transformed images.
        )r   __call__)r   r'   r   r   s      r   r*   zImageToImagePipeline.__call__W   s$    4  uww11&111r   c                       | j         di |}|S )Nr"   )model)r   model_inputsmodel_outputss      r   _forwardzImageToImagePipeline._forwards   s    "
22\22r   Nc                     t          ||          }|                     |gd          }| j        dk    r|                    | j                  }|S )N)r    pt)r'   return_tensors)r   image_processor	frameworktotorch_dtype)r   imager    inputss       r   
preprocesszImageToImagePipeline.preprocessw   sT    5'222%%eWT%JJ>T!!YYt/00Fr   c                 .   g }d|                                 v r|j        }|D ]}|j                                                                                                                            dd                                          }t          j	        |dd          }|dz  
                                                    t          j                  }|                    t          j        |                     t!          |          dk    r|n|d         S )Nreconstructionr   r   )sourcedestinationg     o@)keysr;   datasqueezefloatcpuclamp_numpynpmoveaxisroundastypeuint8appendr   	fromarraylen)r   r.   r'   outputsoutputs        r   postprocessz ImageToImagePipeline.postprocess~   s    }113333#2G 	3 	3F[((**00226688??1EEKKMMF[rBBBFun++--44RX>>FMM%/&112222VqvvfQi7r   )N)__name__
__module____qualname____doc__r   r&   r   strr   r*   r/   r9   rP   __classcell__)r   s   @r   r   r   '   s         :F F F F F

E 
E 
E2CcM4;NNO2	}d=11	22 2 2 2 2 28     
8 
8 
8 
8 
8 
8 
8r   r   )typingr   r   rE   rF   utilsr   r   r   r	   r
   baser   r   PILr   image_utilsr   models.auto.modeling_autor   
get_loggerrQ   loggerr   r"   r   r   <module>r_      s^                            5 4 4 4 4 4 4 4  )(((((( SRRRRRR		H	%	% ,,FFFGG`8 `8 `8 `8 `88 `8 `8 HG`8 `8 `8r   