
    g#                         d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
  e
j        e          Z G d d	e          Z G d
 de          ZdS )zX-MOD configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingc                   Z     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )
XmodConfigan  
    This is the configuration class to store the configuration of a [`XmodModel`]. It is used to instantiate an X-MOD
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the
    [facebook/xmod-base](https://huggingface.co/facebook/xmod-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the X-MOD model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`XmodModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`XmodModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        is_decoder (`bool`, *optional*, defaults to `False`):
            Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        classifier_dropout (`float`, *optional*):
            The dropout ratio for the classification head.
        pre_norm (`bool`, *optional*, defaults to `False`):
            Whether to apply layer normalization before each block.
        adapter_reduction_factor (`int` or `float`, *optional*, defaults to 2):
            The factor by which the dimensionality of the adapter is reduced relative to `hidden_size`.
        adapter_layer_norm (`bool`, *optional*, defaults to `False`):
            Whether to apply a new layer normalization before the adapter modules (shared across all adapters).
        adapter_reuse_layer_norm (`bool`, *optional*, defaults to `True`):
            Whether to reuse the second layer normalization and apply it before the adapter modules as well.
        ln_before_adapter (`bool`, *optional*, defaults to `True`):
            Whether to apply the layer normalization before the residual connection around the adapter module.
        languages (`Iterable[str]`, *optional*, defaults to `["en_XX"]`):
            An iterable of language codes for which adapter modules should be initialized.
        default_language (`str`, *optional*):
            Language code of a default language. It will be assumed that the input is in this language if no language
            codes are explicitly passed to the forward method.

    Examples:

    ```python
    >>> from transformers import XmodConfig, XmodModel

    >>> # Initializing an X-MOD facebook/xmod-base style configuration
    >>> configuration = XmodConfig()

    >>> # Initializing a model (with random weights) from the facebook/xmod-base style configuration
    >>> model = XmodModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```xmod:w           gelu皙?      {Gz?-q=   r   absoluteTNFen_XXc                     t                      j        d|||d| || _        || _        || _        || _        || _        || _        || _        || _	        |	| _
        |
| _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        t-          |          | _        || _        d S )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsposition_embedding_type	use_cacheclassifier_dropoutpre_normadapter_reduction_factoradapter_layer_normadapter_reuse_layer_normln_before_adapterlist	languagesdefault_language)selfr!   r"   r#   r$   r&   r%   r'   r(   r)   r*   r+   r,   r   r   r   r-   r.   r/   r0   r1   r2   r3   r4   r6   r7   kwargs	__class__s                              g/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/xmod/configuration_xmod.pyr    zXmodConfig.__init__r   s    : 	sl\hsslrsss$&!2#6 $!2#6 ,H)'>$.!2,'>$""4 (@%"4(@%!2i 0    )r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   TNFr   FTTr   N)__name__
__module____qualname____doc__
model_typer    __classcell__)r:   s   @r;   r
   r
      s        P Pd J %( # *!" !%541 41 41 41 41 41 41 41 41 41r<   r
   c                   J    e Zd Zedeeeeef         f         fd            ZdS )XmodOnnxConfigreturnc                 Z    | j         dk    rdddd}nddd}t          d|fd|fg          S )	Nzmultiple-choicebatchchoicesequence)r   r   r   )r   r   	input_idsattention_mask)taskr   )r8   dynamic_axiss     r;   inputszXmodOnnxConfig.inputs   sU    9)))&8
CCLL&:66Ll+!<0
 
 	
r<   N)r=   r>   r?   propertyr   strintrN   r   r<   r;   rD   rD      sL        

WS#X%6 67 

 

 

 X

 

 

r<   rD   N)r@   collectionsr   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerr=   loggerr
   rD   r   r<   r;   <module>rY      s       # # # # # #       3 3 3 3 3 3             
	H	%	%I1 I1 I1 I1 I1! I1 I1 I1Z
 
 
 
 
Z 
 
 
 
 
r<   