
    g+                         d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
  e
j        e          Z G d d	e          Z G d
 de          ZdS )zXLM configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingc                   x     e Zd ZdZdZdddddZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )	XLMConfiga  
    This is the configuration class to store the configuration of a [`XLMModel`] or a [`TFXLMModel`]. It is used to
    instantiate a XLM model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the
    [FacebookAI/xlm-mlm-en-2048](https://huggingface.co/FacebookAI/xlm-mlm-en-2048) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 30145):
            Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`XLMModel`] or [`TFXLMModel`].
        emb_dim (`int`, *optional*, defaults to 2048):
            Dimensionality of the encoder layers and the pooler layer.
        n_layer (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        n_head (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for the attention mechanism
        gelu_activation (`bool`, *optional*, defaults to `True`):
            Whether or not to use *gelu* for the activations instead of *relu*.
        sinusoidal_embeddings (`bool`, *optional*, defaults to `False`):
            Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.
        causal (`bool`, *optional*, defaults to `False`):
            Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in
            order to only attend to the left-side context instead if a bidirectional context.
        asm (`bool`, *optional*, defaults to `False`):
            Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction
            layer.
        n_langs (`int`, *optional*, defaults to 1):
            The number of languages the model handles. Set to 1 for monolingual models.
        use_lang_emb (`bool`, *optional*, defaults to `True`)
            Whether to use language embeddings. Some models use additional language embeddings, see [the multilingual
            models page](http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings) for information
            on how to use them.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        embed_init_std (`float`, *optional*, defaults to 2048^-0.5):
            The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.
        init_std (`int`, *optional*, defaults to 50257):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the
            embedding matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        bos_index (`int`, *optional*, defaults to 0):
            The index of the beginning of sentence token in the vocabulary.
        eos_index (`int`, *optional*, defaults to 1):
            The index of the end of sentence token in the vocabulary.
        pad_index (`int`, *optional*, defaults to 2):
            The index of the padding token in the vocabulary.
        unk_index (`int`, *optional*, defaults to 3):
            The index of the unknown token in the vocabulary.
        mask_index (`int`, *optional*, defaults to 5):
            The index of the masking token in the vocabulary.
        is_encoder(`bool`, *optional*, defaults to `True`):
            Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.
        summary_type (`string`, *optional*, defaults to "first"):
            Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

            Has to be one of the following options:

                - `"last"`: Take the last token hidden state (like XLNet).
                - `"first"`: Take the first token hidden state (like BERT).
                - `"mean"`: Take the mean of all tokens hidden states.
                - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
                - `"attn"`: Not implemented now, use multi-head attention.
        summary_use_proj (`bool`, *optional*, defaults to `True`):
            Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

            Whether or not to add a projection after the vector extraction.
        summary_activation (`str`, *optional*):
            Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

            Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
        summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
            Used in the sequence classification and multiple choice models.

            Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
        summary_first_dropout (`float`, *optional*, defaults to 0.1):
            Used in the sequence classification and multiple choice models.

            The dropout ratio to be used after the projection and activation.
        start_n_top (`int`, *optional*, defaults to 5):
            Used in the SQuAD evaluation script.
        end_n_top (`int`, *optional*, defaults to 5):
            Used in the SQuAD evaluation script.
        mask_token_id (`int`, *optional*, defaults to 0):
            Model agnostic parameter to identify masked tokens when generating text in an MLM context.
        lang_id (`int`, *optional*, defaults to 1):
            The ID of the language used by the model. This parameter is used when generating text in a given language.

    Examples:

    ```python
    >>> from transformers import XLMConfig, XLMModel

    >>> # Initializing a XLM configuration
    >>> configuration = XLMConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = XLMModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```xlmemb_dimn_headsn_layers
vocab_size)hidden_sizenum_attention_headsnum_hidden_layersn_wordsu           皙?TF      ;f?-q={Gz?r      r      firstNc"                    || _         || _        || _        || _        || _        || _        || _        || _        |	| _        |
| _	        || _
        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        d|"v r|"d         | _         tA                      j!        d| |!d|" dS )zConstructs XLMConfig.r   )pad_token_idbos_token_idN )"r   r   r   r   dropoutattention_dropoutgelu_activationsinusoidal_embeddingscausalasmn_langsuse_lang_emblayer_norm_eps	bos_index	eos_index	pad_index	unk_index
mask_index
is_encodermax_position_embeddingsembed_init_stdinit_stdsummary_typesummary_use_projsummary_activationsummary_proj_to_labelssummary_first_dropoutstart_n_top	end_n_topmask_token_idlang_idr   super__init__)$selfr   r   r   r   r%   r&   r'   r(   r)   r*   r+   r,   r4   r5   r-   r6   r.   r/   r0   r1   r2   r3   r7   r8   r9   r:   r;   r<   r=   r>   r?   r"   r#   kwargs	__class__s$                                      e/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/xlm/configuration_xlm.pyrA   zXLMConfig.__init__   s/   L % !2.%:"(,""""$$'>$, ( 0"4&<#%:"&"*!),DLXlXXQWXXXXX    )!r   r   r   r   r   r   TFFFr   Tr   r   r   r   r   r   r   r   r   Tr    TNTr   r   r   r   r   r   r   )__name__
__module____qualname____doc__
model_typeattribute_maprA   __classcell__)rD   s   @rE   r
   r
      s        m m^ J ('	 M # #!#!EIY IY IY IY IY IY IY IY IY IYrF   r
   c                   J    e Zd Zedeeeeef         f         fd            ZdS )XLMOnnxConfigreturnc                 `    | j         dk    rdddd}nddd}t          d|fd|fd	|fg          S )
Nzmultiple-choicebatchchoicesequence)r   r   r   )r   r   	input_idsattention_masktoken_type_ids)taskr   )rB   dynamic_axiss     rE   inputszXLMOnnxConfig.inputs   s]    9)))&8
CCLL&:66Ll+!<0!<0
 
 	
rF   N)rG   rH   rI   propertyr   strintrZ   r$   rF   rE   rO   rO      sL        
WS#X%6 67 
 
 
 X
 
 
rF   rO   N)rJ   collectionsr   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerrG   loggerr
   rO   r$   rF   rE   <module>re      s      # # # # # #       3 3 3 3 3 3             
	H	%	%AY AY AY AY AY  AY AY AYJ
 
 
 
 
J 
 
 
 
 
rF   