
    g                     ^    d Z ddlmZ ddlmZ  ej        e          Z G d de          ZdS )zXGLM model configuration   )PretrainedConfig)loggingc                   ^     e Zd ZdZdZdgZddddZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )
XGLMConfiga0  
    This is the configuration class to store the configuration of a [`XGLMModel`]. It is used to instantiate an XGLM
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the XGLM
    [facebook/xglm-564M](https://huggingface.co/facebook/xglm-564M) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 256008):
            Vocabulary size of the XGLM model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`XGLMModel`] or [`FlaxXGLMModel`].
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        d_model (`int`, *optional*, defaults to 1024):
            Dimension of the layers and the pooler layer.
        ffn_dim (`int`, *optional*, defaults to 4096):
            Dimension of the "intermediate" (often named feed-forward) layer in decoder.
        num_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers Transformer decoder.
        attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer decoder.
        activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, dencoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        scale_embedding (`bool`, *optional*, defaults to `True`):
            Scale embeddings by diving by sqrt(d_model).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).

    Example:

    ```python
    >>> from transformers import XGLMModel, XGLMConfig

    >>> # Initializing a XGLM facebook/xglm-564M style configuration
    >>> configuration = XGLMConfig()

    >>> # Initializing a model from the facebook/xglm-564M style configuration
    >>> model = XGLMModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```xglmpast_key_valuesattention_headsd_model
num_layers)num_attention_headshidden_sizenum_hidden_layers                gelu皙?        {Gz?T          c                    || _         || _        || _        || _        || _        || _        || _        || _        |	| _        |
| _	        || _
        || _        || _        || _         t                      j        d||||d| d S )N)pad_token_idbos_token_ideos_token_iddecoder_start_token_id )
vocab_sizemax_position_embeddingsr
   ffn_dimr   r	   activation_functiondropoutattention_dropoutactivation_dropout	layerdropinit_stdscale_embedding	use_cachesuper__init__)selfr"   r#   r
   r$   r   r	   r%   r&   r'   r(   r)   r*   r+   r,   r    r   r   r   kwargs	__class__s                       g/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/xglm/configuration_xglm.pyr.   zXGLMConfig.__init__]   s    , %'>$$.#6 !2"4" ." 	
%%%#9		
 	

 	
 	
 	
 	
 	
    )r   r   r   r   r   r   r   r   r   r   r   r   TTr   r   r   r   )	__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferenceattribute_mapr.   __classcell__)r1   s   @r2   r   r      s        9 9v J#4"5  1 ) M  $" '+
 +
 +
 +
 +
 +
 +
 +
 +
 +
r3   r   N)	r7   configuration_utilsr   utilsr   
get_loggerr4   loggerr   r!   r3   r2   <module>r@      s      3 3 3 3 3 3       
	H	%	%p
 p
 p
 p
 p
! p
 p
 p
 p
 p
r3   