
    gMN                     n    d Z ddlZddlZddlmZ ddlmZ  ej        e          Z	 G d de          Z
dS )zWav2Vec2 model configuration    N   )PretrainedConfig)loggingc                        e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d% fd#	Zed$             Z xZS )&Wav2Vec2Configa3  
    This is the configuration class to store the configuration of a [`Wav2Vec2Model`]. It is used to instantiate an
    Wav2Vec2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Wav2Vec2
    [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32):
            Vocabulary size of the Wav2Vec2 model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`Wav2Vec2Model`] or [`TFWav2Vec2Model`]. Vocabulary size of the
            model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward
            method of [`Wav2Vec2Model`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        activation_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for activations inside the fully connected layer.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        final_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for the final projection layer of [`Wav2Vec2ForCTC`].
        layerdrop (`float`, *optional*, defaults to 0.1):
            The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
            details.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        feat_extract_norm (`str`, *optional*, defaults to `"group"`):
            The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
            normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
            convolutional layers.
        feat_proj_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for output of the feature encoder.
        feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the 1D convolutional layers of the feature
            extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
        feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for quantized feature encoder states.
        conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
            A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
            feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
        conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
            A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
            of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
        conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
            A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
            length of *conv_kernel* defines the number of convolutional layers and has to match the length of
            *conv_dim*.
        conv_bias (`bool`, *optional*, defaults to `False`):
            Whether the 1D convolutional layers have a bias.
        num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
            Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
            embeddings layer.
        num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
            Number of groups of 1D convolutional positional embeddings layer.
        do_stable_layer_norm (`bool`, *optional*, defaults to `False`):
            Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is
            True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is
            False` corresponds to applying layer norm after the attention layer.
        apply_spec_augment (`bool`, *optional*, defaults to `True`):
            Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
            [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
            Recognition](https://arxiv.org/abs/1904.08779).
        mask_time_prob (`float`, *optional*, defaults to 0.05):
            Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
            procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
            reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
            masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
            actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
        mask_time_length (`int`, *optional*, defaults to 10):
            Length of vector span along the time axis.
        mask_time_min_masks (`int`, *optional*, defaults to 2),:
            The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
            irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
            mask_time_min_masks''
        mask_feature_prob (`float`, *optional*, defaults to 0.0):
            Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
            masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
            the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
            span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
            may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
            True`.
        mask_feature_length (`int`, *optional*, defaults to 10):
            Length of vector span along the feature axis.
        mask_feature_min_masks (`int`, *optional*, defaults to 0),:
            The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
            step, irrespectively of `mask_feature_prob`. Only relevant if
            ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
        num_codevectors_per_group (`int`, *optional*, defaults to 320):
            Number of entries in each quantization codebook (group).
        num_codevector_groups (`int`, *optional*, defaults to 2):
            Number of codevector groups for product codevector quantization.
        contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
            The temperature *kappa* in the contrastive loss.
        feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for the output of the feature encoder that's used by the quantizer.
        num_negatives (`int`, *optional*, defaults to 100):
            Number of negative samples for the contrastive loss.
        codevector_dim (`int`, *optional*, defaults to 256):
            Dimensionality of the quantized feature vectors.
        proj_codevector_dim (`int`, *optional*, defaults to 256):
            Dimensionality of the final projection of both the quantized and the transformer features.
        diversity_loss_weight (`int`, *optional*, defaults to 0.1):
            The weight of the codebook diversity loss component.
        ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`):
            Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
            instance of [`Wav2Vec2ForCTC`].
        ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
            Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
            occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
            of [`Wav2Vec2ForCTC`].
        use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
            Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
            instance of [`Wav2Vec2ForSequenceClassification`].
        classifier_proj_size (`int`, *optional*, defaults to 256):
            Dimensionality of the projection before token mean-pooling for classification.
        tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
            A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
            module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
        tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
            A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
            *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
        tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
            A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
            *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
        xvector_output_dim (`int`, *optional*, defaults to 512):
            Dimensionality of the *XVector* embedding vectors.
        add_adapter (`bool`, *optional*, defaults to `False`):
            Whether a convolutional network should be stacked on top of the Wav2Vec2 Encoder. Can be very useful for
            warm-starting Wav2Vec2 for SpeechEncoderDecoder models.
        adapter_kernel_size (`int`, *optional*, defaults to 3):
            Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
        adapter_stride (`int`, *optional*, defaults to 2):
            Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`.
        num_adapter_layers (`int`, *optional*, defaults to 3):
            Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is
            True`.
        adapter_attn_dim (`int`, *optional*):
            Dimension of the attention adapter weights to be used in each attention block. An example of a model using
            attention adapters is [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all).
        output_hidden_size (`int`, *optional*):
            Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant
            if `add_adapter is True`.

    Example:

    ```python
    >>> from transformers import Wav2Vec2Config, Wav2Vec2Model

    >>> # Initializing a Wav2Vec2 facebook/wav2vec2-base-960h style configuration
    >>> configuration = Wav2Vec2Config()

    >>> # Initializing a model (with random weights) from the facebook/wav2vec2-base-960h style configuration
    >>> model = Wav2Vec2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```wav2vec2             gelu皙?        {Gz?h㈵>group   r   r   r   r   r   r         r   r   r   r   r   
   r   r   r   r   r   r   F      T皙?r   r   r   @  d      sumr   r   r   r   i  r   r   r      r#   r#   r   r   r#   r#   r   r#   r   Nc8           
      <    t                      j        di |8|/|0|1d || _        || _        || _        t          |          | _        t          |          | _        t          |          | _        || _	        || _
        || _        t          | j                  | _        || _        || _        || _        || _        || _        |	| _        || _        |
| _        || _        || _        || _        || _        || _        || _        |)| _        t          | j                  | j        k    s:t          | j                  | j        k    st          | j                  | j        k    rOt;          dt          | j                   dt          | j                   dt          | j                   d          || _        || _        || _         || _!        || _"        || _#        || _$        | | _%        |!| _&        |"| _'        || _(        |#| _)        |$| _*        |%| _+        |&| _,        |'| _-        |(| _.        |2| _/        |3| _0        |4| _1        |5| _2        |6p|| _3        |7| _4        |*| _5        t          |+          | _6        t          |,          | _7        t          |-          | _8        |.| _9        d S )N)pad_token_idbos_token_ideos_token_idzConfiguration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) = z`, `len(config.conv_stride) = z`, `len(config.conv_kernel) = z`. ):super__init__hidden_sizefeat_extract_normfeat_extract_activationlistconv_dimconv_strideconv_kernel	conv_biasnum_conv_pos_embeddingsnum_conv_pos_embedding_groupslennum_feat_extract_layersnum_hidden_layersintermediate_size
hidden_actnum_attention_headshidden_dropoutattention_dropoutactivation_dropoutfeat_proj_dropoutfinal_dropout	layerdroplayer_norm_epsinitializer_range
vocab_sizedo_stable_layer_normuse_weighted_layer_sum
ValueErrorapply_spec_augmentmask_time_probmask_time_lengthmask_time_min_masksmask_feature_probmask_feature_lengthmask_feature_min_masksnum_codevectors_per_groupnum_codevector_groupscontrastive_logits_temperaturefeat_quantizer_dropoutnum_negativescodevector_dimproj_codevector_dimdiversity_loss_weightctc_loss_reductionctc_zero_infinityadd_adapteradapter_kernel_sizeadapter_stridenum_adapter_layersoutput_hidden_sizeadapter_attn_dimclassifier_proj_sizetdnn_dimtdnn_kerneltdnn_dilationxvector_output_dim):selfrD   r,   r8   r;   r9   r:   r<   r>   r=   r?   rR   r@   rA   rC   rB   r-   r.   r0   r1   r2   r3   r4   r5   rE   rH   rI   rJ   rK   rL   rM   rN   rO   rP   rQ   rS   rT   rU   rV   rW   rX   rF   r_   r`   ra   rb   rc   r&   r'   r(   rY   rZ   r[   r\   r]   r^   kwargs	__class__s:                                                            o/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/wav2vec2/configuration_wav2vec2.pyr+   zWav2Vec2Config.__init__   s   v 	ss6s<frsssss&!2'>$X,,,,"'>$-J*'*4='9'9$!2!2$#6 ,!2"4!2*",!2$$8!&<# !""d&BBBD$%%)EEEDM""d&BBBI&&I IFI$JZF[F[I I 0343C/D/DI I I   #5, 0#6 !2#6 &<# *C&%:".L+&<#*,#6 %:" #5!2 '#6 ,"4"4"C 0 %9! X,,!-00"4    c                 L    t          j        t          j        | j        d          S )Nr#   )	functoolsreduceoperatormulr1   )rd   s    rg   inputs_to_logits_ratioz%Wav2Vec2Config.inputs_to_logits_ratioV  s    d.>BBBrh   )7r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   Fr   r   FTr   r   r   r   r   r   r   r   r   r   r   r   r   r    FFr   r!   r"   r$   r   r   r#   r   Fr   r   r   NN)	__name__
__module____qualname____doc__
model_typer+   propertyrn   __classcell__)rf   s   @rg   r   r      s"       l l\ J "! &4)* #&(" "%'*! $ +#%qH5 H5 H5 H5 H5 H5T C C XC C C C Crh   r   )rr   rj   rl   configuration_utilsr   utilsr   
get_loggerro   loggerr   r)   rh   rg   <module>rz      s    # "      3 3 3 3 3 3       
	H	%	%}C }C }C }C }C% }C }C }C }C }Crh   