
    g.D                     n    d Z ddlZddlZddlmZ ddlmZ  ej        e          Z	 G d de          Z
dS )zUniSpeech model configuration    N   )PretrainedConfig)loggingc                        e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d! fd	Zed              Z xZS )"UniSpeechConfiga,  
    This is the configuration class to store the configuration of a [`UniSpeechModel`]. It is used to instantiate an
    UniSpeech model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the UniSpeech
    [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32):
            Vocabulary size of the UniSpeech model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`UniSpeechModel`]. Vocabulary size of the model. Defines the
            different tokens that can be represented by the *inputs_ids* passed to the forward method of
            [`UniSpeechModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        activation_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for activations inside the fully connected layer.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        feat_proj_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for output of the feature encoder.
        feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for the output of the feature encoder that's used by the quantizer.
        final_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for the final projection layer of [`UniSpeechForCTC`].
        layerdrop (`float`, *optional*, defaults to 0.1):
            The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
            details.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        feat_extract_norm (`str`, *optional*, defaults to `"group"`):
            The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
            normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
            convolutional layers.
        feat_extract_activation (`str, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the 1D convolutional layers of the feature
            extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
        conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
            A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
            feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
        conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
            A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
            of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
        conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 2, 2)`):
            A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
            length of *conv_kernel* defines the number of convolutional layers and has to match the length of
            *conv_dim*.
        conv_bias (`bool`, *optional*, defaults to `False`):
            Whether the 1D convolutional layers have a bias.
        num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
            Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
            embeddings layer.
        num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
            Number of groups of 1D convolutional positional embeddings layer.
        do_stable_layer_norm (`bool`, *optional*, defaults to `False`):
            Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is
            True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is
            False` corresponds to applying layer norm after the attention layer.
        apply_spec_augment (`bool`, *optional*, defaults to `True`):
            Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
            [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
            Recognition](https://arxiv.org/abs/1904.08779).
        mask_time_prob (`float`, *optional*, defaults to 0.05):
            Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
            procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
            reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
            masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
            actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
        mask_time_length (`int`, *optional*, defaults to 10):
            Length of vector span along the time axis.
        mask_time_min_masks (`int`, *optional*, defaults to 2):
            The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
            irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
            mask_time_min_masks''
        mask_feature_prob (`float`, *optional*, defaults to 0.0):
            Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
            masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
            the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
            span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
            may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
            True`.
        mask_feature_length (`int`, *optional*, defaults to 10):
            Length of vector span along the feature axis.
        mask_feature_min_masks (`int`, *optional*, defaults to 0):
            The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
            step, irrespectively of `mask_feature_prob`. Only relevant if
            ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
        num_codevectors_per_group (`int`, *optional*, defaults to 320):
            Number of entries in each quantization codebook (group).
        num_codevector_groups (`int`, *optional*, defaults to 2):
            Number of codevector groups for product codevector quantization.
        contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
            The temperature *kappa* in the contrastive loss.
        num_negatives (`int`, *optional*, defaults to 100):
            Number of negative samples for the contrastive loss.
        codevector_dim (`int`, *optional*, defaults to 256):
            Dimensionality of the quantized feature vectors.
        proj_codevector_dim (`int`, *optional*, defaults to 256):
            Dimensionality of the final projection of both the quantized and the transformer features.
        diversity_loss_weight (`int`, *optional*, defaults to 0.1):
            The weight of the codebook diversity loss component.
        ctc_loss_reduction (`str`, *optional*, defaults to `"mean"`):
            Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
            instance of [`UniSpeechForCTC`].
        ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
            Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
            occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
            of [`UniSpeechForCTC`].
        use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
            Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
            instance of [`UniSpeechForSequenceClassification`].
        classifier_proj_size (`int`, *optional*, defaults to 256):
            Dimensionality of the projection before token mean-pooling for classification.
        num_ctc_classes (`int`, *optional*, defaults to 80):
            Specifies the number of classes (phoneme tokens and blank token) for phoneme-level CTC loss. Only relevant
            when using an instance of [`UniSpeechForPreTraining`].
        pad_token_id (`int`, *optional*, defaults to 0):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        replace_prob (`float`, *optional*, defaults to 0.5):
            Propability that transformer feature is replaced by quantized feature for pretraining.

    Example:

    ```python
    >>> from transformers import UniSpeechConfig, UniSpeechModel

    >>> # Initializing a UniSpeech facebook/unispeech-base-960h style configuration
    >>> configuration = UniSpeechConfig()

    >>> # Initializing a model (with random weights) from the facebook/unispeech-base-960h style configuration
    >>> model = UniSpeechModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```	unispeech             gelu皙?        {Gz?h㈵>group   r   r   r   r   r   r         r   r   r   r   r   
   r   r   r   r   r   r   F      T皙?r   r   r   @  d      meanP            ?c0           
      z    t                      j        di |0|,|-|.d || _        || _        || _        t          |          | _        t          |          | _        t          |          | _        || _	        || _
        || _        t          | j                  | _        || _        || _        || _        || _        || _        |	| _        || _        |
| _        || _        || _        || _        || _        |+| _        || _        || _        |)| _        |*| _        t          | j                  | j        k    s:t          | j                  | j        k    st          | j                  | j        k    rOt?          dt          | j                   dt          | j                   dt          | j                   d          || _         || _!        || _"        || _#        || _$        || _%        || _&        | | _'        |!| _(        |"| _)        || _*        |#| _+        |$| _,        |%| _-        |&| _.        |'| _/        |(| _0        |/| _1        d S )N)pad_token_idbos_token_ideos_token_idzConfiguration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) = z`, `len(config.conv_stride) = z`, `len(config.conv_kernel) = z`. )2super__init__hidden_sizefeat_extract_normfeat_extract_activationlistconv_dimconv_strideconv_kernel	conv_biasnum_conv_pos_embeddingsnum_conv_pos_embedding_groupslennum_feat_extract_layersnum_hidden_layersintermediate_size
hidden_actnum_attention_headshidden_dropoutattention_dropoutactivation_dropoutfeat_proj_dropoutfinal_dropout	layerdroplayer_norm_epsinitializer_rangenum_ctc_classes
vocab_sizedo_stable_layer_normuse_weighted_layer_sumclassifier_proj_size
ValueErrorapply_spec_augmentmask_time_probmask_time_lengthmask_time_min_masksmask_feature_probmask_feature_lengthmask_feature_min_masksnum_codevectors_per_groupnum_codevector_groupscontrastive_logits_temperaturefeat_quantizer_dropoutnum_negativescodevector_dimproj_codevector_dimdiversity_loss_weightctc_loss_reductionctc_zero_infinityreplace_prob)2selfrD   r+   r7   r:   r8   r9   r;   r=   r<   r>   rS   r?   r@   rB   rA   r,   r-   r/   r0   r1   r2   r3   r4   rE   rI   rJ   rK   rL   rM   rN   rO   rP   rQ   rR   rT   rU   rV   rW   rX   rY   rF   rG   rC   r%   r&   r'   rZ   kwargs	__class__s2                                                    q/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/unispeech/configuration_unispeech.pyr*   zUniSpeechConfig.__init__   s~   f 	ss6s<frsssss&!2'>$X,,,,"'>$-J*'*4='9'9$!2!2$#6 ,!2"4!2*",!2.$$8!&<#$8! !""d&BBBD$%%)EEEDM""d&BBBI&&I IFI$JZF[F[I I 0343C/D/DI I I   #5, 0#6 !2#6 &<# *C&%:".L+&<#*,#6 %:" #5!2 )    c                 L    t          j        t          j        | j        d          S )Nr"   )	functoolsreduceoperatormulr0   )r[   s    r^   inputs_to_logits_ratioz&UniSpeechConfig.inputs_to_logits_ratio0  s    d.>BBBr_   )/r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   Fr   r   FTr   r   r   r   r   r   r   r   r   r   r   r   r   r    FFr   r!   r   r"   r   r#   )	__name__
__module____qualname____doc__
model_typer*   propertyre   __classcell__)r]   s   @r^   r   r      s
       Z Zx J "! &4)* #&(" "%'*!!$ at) t) t) t) t) t)l C C XC C C C Cr_   r   )ri   ra   rc   configuration_utilsr   utilsr   
get_loggerrf   loggerr   r(   r_   r^   <module>rq      s    $ #      3 3 3 3 3 3       
	H	%	%WC WC WC WC WC& WC WC WC WC WCr_   