
    g              	          d Z ddlZddlZddlZddlmZ ddlmZm	Z	m
Z
 ddlZddlZddlmZ ddlmZmZmZ ddlmZ dd	lmZ dd
lmZ ddlmZmZmZ ddlmZmZmZm Z m!Z!m"Z"m#Z# ddl$m%Z% ddl&m'Z'  e!j(        e)          Z*dZ+dZ,g dZ-dZ.dZ/e G d de                      Z0e G d de                      Z1e G d de                      Z2e G d de                      Z3d Z4d Z5 G d dej6                  Z7 G d  d!ej6                  Z8 G d" d#ej6                  Z9dNd&ej:        d'e;d(e<d)ej:        fd*Z= G d+ d,ej6                  Z> G d- d.ej6                  Z? G d/ d0ej6                  Z@ G d1 d2ej6                  ZA G d3 d4ej6                  ZB G d5 d6ej6                  ZC G d7 d8ej6                  ZD G d9 d:ej6                  ZE G d; d<ej6                  ZF G d= d>e          ZGd?ZHd@ZI edAeHdB           G dC dDeG                      ZJ edEeH           G dF dGeG                      ZK edHeH           G dI dJeG                      ZL edKeH           G dL dMeGe%                      ZMdS )OzPyTorch Swin Transformer model.    N)	dataclass)OptionalTupleUnion)nn)BCEWithLogitsLossCrossEntropyLossMSELoss   )ACT2FN)BackboneOutput)PreTrainedModel) find_pruneable_heads_and_indicesmeshgridprune_linear_layer)ModelOutputadd_code_sample_docstringsadd_start_docstrings%add_start_docstrings_to_model_forwardloggingreplace_return_docstrings	torch_int)BackboneMixin   )
SwinConfigr   z&microsoft/swin-tiny-patch4-window7-224)r   1   i   ztabby, tabby catc                       e Zd ZU dZdZej        ed<   dZe	e
ej        df                  ed<   dZe	e
ej        df                  ed<   dZe	e
ej        df                  ed<   dS )SwinEncoderOutputa  
    Swin encoder's outputs, with potential hidden states and attentions.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, hidden_size, height, width)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
            include the spatial dimensions.
    Nlast_hidden_state.hidden_states
attentionsreshaped_hidden_states)__name__
__module____qualname____doc__r   torchFloatTensor__annotations__r    r   r   r!   r"        b/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/swin/modeling_swin.pyr   r   >   s          2 ,0u(///=AM8E%"3S"89:AAA:>Ju0#567>>>FJHU5+<c+A%BCJJJJJr+   r   c                       e Zd ZU dZdZej        ed<   dZe	ej                 ed<   dZ
e	eej        df                  ed<   dZe	eej        df                  ed<   dZe	eej        df                  ed<   dS )	SwinModelOutputaT  
    Swin model's outputs that also contains a pooling of the last hidden states.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
            Average pooling of the last layer hidden-state.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, hidden_size, height, width)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
            include the spatial dimensions.
    Nr   pooler_output.r    r!   r"   )r#   r$   r%   r&   r   r'   r(   r)   r/   r   r    r   r!   r"   r*   r+   r,   r.   r.   _   s          6 ,0u(///15M8E-.555=AM8E%"3S"89:AAA:>Ju0#567>>>FJHU5+<c+A%BCJJJJJr+   r.   c                      e Zd ZU dZdZeej                 ed<   dZ	ej        ed<   dZ
eeej        df                  ed<   dZeeej        df                  ed<   dZeeej        df                  ed<   ed	             ZdS )
SwinMaskedImageModelingOutputa  
    Swin masked image model outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided):
            Masked image modeling (MLM) loss.
        reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Reconstructed pixel values.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, hidden_size, height, width)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
            include the spatial dimensions.
    Nlossreconstruction.r    r!   r"   c                 D    t          j        dt                     | j        S )Nzlogits attribute is deprecated and will be removed in version 5 of Transformers. Please use the reconstruction attribute to retrieve the final output instead.)warningswarnFutureWarningr3   selfs    r,   logitsz$SwinMaskedImageModelingOutput.logits   s*    ]	
 	
 	

 ""r+   )r#   r$   r%   r&   r2   r   r'   r(   r)   r3   r    r   r!   r"   propertyr:   r*   r+   r,   r1   r1      s          6 )-D(5$
%,,,(,NE%,,,=AM8E%"3S"89:AAA:>Ju0#567>>>FJHU5+<c+A%BCJJJ# # X# # #r+   r1   c                       e Zd ZU dZdZeej                 ed<   dZ	ej        ed<   dZ
eeej        df                  ed<   dZeeej        df                  ed<   dZeeej        df                  ed<   dS )	SwinImageClassifierOutputa  
    Swin outputs for image classification.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, hidden_size, height, width)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
            include the spatial dimensions.
    Nr2   r:   .r    r!   r"   )r#   r$   r%   r&   r2   r   r'   r(   r)   r:   r    r   r!   r"   r*   r+   r,   r=   r=      s          6 )-D(5$
%,,, $FE$$$=AM8E%"3S"89:AAA:>Ju0#567>>>FJHU5+<c+A%BCJJJJJr+   r=   c                     | j         \  }}}}|                     |||z  |||z  ||          } |                     dddddd                                                              d|||          }|S )z2
    Partitions the given input into windows.
    r   r   r            shapeviewpermute
contiguous)input_featurewindow_size
batch_sizeheightwidthnum_channelswindowss          r,   window_partitionrO      s     /<.A+J|!&&Fk);8Lk[g M ##Aq!Q155@@BBGGKYdfrssGNr+   c                     | j         d         }|                     d||z  ||z  |||          } |                     dddddd                                                              d|||          } | S )z?
    Merges windows to produce higher resolution features.
    rB   r   r   r   r?   r@   rA   rC   )rN   rI   rK   rL   rM   s        r,   window_reverserQ      sx     =$Lll2v4e{6JKYdfrssGooaAq!Q//::<<AA"feUabbGNr+   c            
            e Zd ZdZd fd	Zdej        dededej        fdZ	 	 dd
e	ej
                 de	ej                 dedeej                 fdZ xZS )SwinEmbeddingszW
    Construct the patch and position embeddings. Optionally, also the mask token.
    Fc                 <   t                                                       t          |          | _        | j        j        }| j        j        | _        |r-t          j        t          j
        dd|j                            nd | _        |j        r6t          j        t          j
        d|dz   |j                            | _        nd | _        t          j        |j                  | _        t          j        |j                  | _        |j        | _        || _        d S )Nr   )super__init__SwinPatchEmbeddingspatch_embeddingsnum_patches	grid_size
patch_gridr   	Parameterr'   zeros	embed_dim
mask_tokenuse_absolute_embeddingsposition_embeddings	LayerNormnormDropouthidden_dropout_probdropout
patch_sizeconfig)r9   rh   use_mask_tokenrY   	__class__s       r,   rV   zSwinEmbeddings.__init__   s     3F ; ;+7/9O]g",u{1a9I'J'JKKKcg) 	,')|EK;QR?TZTd4e4e'f'fD$$'+D$L!122	z&"<== +r+   
embeddingsrK   rL   returnc                    |j         d         dz
  }| j        j         d         dz
  }t          j                                        s||k    r||k    r| j        S | j        ddddf         }| j        ddddf         }|j         d         }|| j        z  }	|| j        z  }
t          |dz            }|                    d|||          }|                    dddd          }t          j
                            ||	|
fdd	
          }|                    dddd                              dd|          }t          j        ||fd          S )a   
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
        images. This method is also adapted to support torch.jit tracing.

        Adapted from:
        - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
        - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
        r   NrB         ?r   r   r?   bicubicF)sizemodealign_cornersdim)rD   ra   r'   jit
is_tracingrg   r   reshaperF   r   
functionalinterpolaterE   cat)r9   rk   rK   rL   rY   num_positionsclass_pos_embedpatch_pos_embedrt   
new_height	new_widthsqrt_num_positionss               r,   interpolate_pos_encodingz'SwinEmbeddings.interpolate_pos_encoding  sr    !&q)A-06q9A= y##%% 	,+*F*F6UZ??++2111bqb592111abb59r"t.
T_,	&}c'9::)11!5GI[]`aa)11!Q1==-33i(	 4 
 
 *11!Q1==BB1b#NNy/?;CCCCr+   Npixel_valuesbool_masked_posr   c                    |j         \  }}}}|                     |          \  }}	|                     |          }|                                \  }
}}|R| j                            |
|d          }|                    d                              |          }|d|z
  z  ||z  z   }| j        '|r|| 	                    |||          z   }n
|| j        z   }| 
                    |          }||	fS )NrB         ?)rD   rX   rc   rp   r_   expand	unsqueezetype_asra   r   rf   )r9   r   r   r   _rM   rK   rL   rk   output_dimensionsrJ   seq_lenmask_tokensmasks                 r,   forwardzSwinEmbeddings.forward*  s	    *6);&<(,(=(=l(K(K%
%YYz**
!+!2!2
GQ&/00WbIIK",,R0088EED#sTz2[45GGJ#/' C'$*G*G
TZ\a*b*bb

'$*BB
\\*--
,,,r+   )F)NF)r#   r$   r%   r&   rV   r'   Tensorintr   r   r(   
BoolTensorboolr   r   __classcell__rj   s   @r,   rS   rS      s              &&D5< &D &DUX &D]b]i &D &D &D &DV 7;).	- -u01- "%"23- #'	-
 
u|	- - - - - - - -r+   rS   c                   t     e Zd ZdZ fdZd Zdeej                 de	ej
        e	e         f         fdZ xZS )rW   z
    This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
    `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
    Transformer.
    c                    t                                                       |j        |j        }}|j        |j        }}t          |t          j        j	                  r|n||f}t          |t          j        j	                  r|n||f}|d         |d         z  |d         |d         z  z  }|| _        || _        || _        || _
        |d         |d         z  |d         |d         z  f| _        t          j        ||||          | _        d S )Nr   r   )kernel_sizestride)rU   rV   
image_sizerg   rM   r^   
isinstancecollectionsabcIterablerY   rZ   r   Conv2d
projection)r9   rh   r   rg   rM   hidden_sizerY   rj   s          r,   rV   zSwinPatchEmbeddings.__init__M  s   !'!2F4EJ
$*$79Ik#-j+/:R#S#SqZZZdfpYq
#-j+/:R#S#SqZZZdfpYq
!!}
15*Q-:VW=:XY$$(&$Q-:a=8*Q-:VW=:XY)L+:^hiiir+   c                 Z   || j         d         z  dk    r@d| j         d         || j         d         z  z
  f}t          j                            ||          }|| j         d         z  dk    rBddd| j         d         || j         d         z  z
  f}t          j                            ||          }|S )Nr   r   )rg   r   rx   pad)r9   r   rK   rL   
pad_valuess        r,   	maybe_padzSwinPatchEmbeddings.maybe_pad\  s    4?1%%**T_Q/%$/!:L2LLMJ=,,\:FFLDOA&&!++Q4?1#5QRAS8S#STJ=,,\:FFLr+   r   rl   c                     |j         \  }}}}|                     |||          }|                     |          }|j         \  }}}}||f}|                    d                              dd          }||fS )Nr?   r   )rD   r   r   flatten	transpose)r9   r   r   rM   rK   rL   rk   r   s           r,   r   zSwinPatchEmbeddings.forwarde  s    )5);&<~~lFEBB__\22
(.1fe#UO''**44Q::
,,,r+   )r#   r$   r%   r&   rV   r   r   r'   r(   r   r   r   r   r   r   s   @r,   rW   rW   F  s         j j j j j  	-HU->$? 	-E%,X]^aXbJbDc 	- 	- 	- 	- 	- 	- 	- 	-r+   rW   c            	            e Zd ZdZej        fdee         dedej        ddf fdZ	d Z
d	ej        d
eeef         dej        fdZ xZS )SwinPatchMerginga'  
    Patch Merging Layer.

    Args:
        input_resolution (`Tuple[int]`):
            Resolution of input feature.
        dim (`int`):
            Number of input channels.
        norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
            Normalization layer class.
    input_resolutionrt   
norm_layerrl   Nc                     t                                                       || _        || _        t	          j        d|z  d|z  d          | _         |d|z            | _        d S )Nr@   r?   Fbias)rU   rV   r   rt   r   Linear	reductionrc   )r9   r   rt   r   rj   s       r,   rV   zSwinPatchMerging.__init__~  sa     01s7AG%@@@Jq3w''			r+   c                     |dz  dk    p|dz  dk    }|r.ddd|dz  d|dz  f}t           j                            ||          }|S )Nr?   r   r   )r   rx   r   )r9   rH   rK   rL   
should_padr   s         r,   r   zSwinPatchMerging.maybe_pad  s\    qjAo:519>
 	IQ519a!<JM--mZHHMr+   rH   input_dimensionsc                    |\  }}|j         \  }}}|                    ||||          }|                     |||          }|d d dd ddd dd d f         }|d d dd ddd dd d f         }	|d d dd ddd dd d f         }
|d d dd ddd dd d f         }t          j        ||	|
|gd          }|                    |dd|z            }|                     |          }|                     |          }|S )Nr   r?   r   rB   r@   )rD   rE   r   r'   rz   rc   r   )r9   rH   r   rK   rL   rJ   rt   rM   input_feature_0input_feature_1input_feature_2input_feature_3s               r,   r   zSwinPatchMerging.forward  sD   ((5(;%
C%**:vulSS}feDD'14a4Aqqq(89'14a4Aqqq(89'14a4Aqqq(89'14a4Aqqq(89	?O_Ve"fhjkk%**:r1|;KLL		-00}55r+   )r#   r$   r%   r&   r   rb   r   r   ModulerV   r   r'   r   r   r   r   s   @r,   r   r   q  s        
 
 XZWc ( (s (# (29 (hl ( ( ( ( ( (  U\ U3PS8_ Y^Ye        r+   r           Finput	drop_probtrainingrl   c                     |dk    s|s| S d|z
  }| j         d         fd| j        dz
  z  z   }|t          j        || j        | j                  z   }|                                 |                     |          |z  }|S )aF  
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
    however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
    layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
    argument.
    r   r   r   )r   dtypedevice)rD   ndimr'   randr   r   floor_div)r   r   r   	keep_probrD   random_tensoroutputs          r,   	drop_pathr     s     CxII[^
Q 77E
5EL Y Y YYMYYy!!M1FMr+   c                   j     e Zd ZdZd	dee         ddf fdZdej        dej        fdZ	de
fdZ xZS )
SwinDropPathzXDrop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).Nr   rl   c                 V    t                                                       || _        d S N)rU   rV   r   )r9   r   rj   s     r,   rV   zSwinDropPath.__init__  s$    "r+   r    c                 8    t          || j        | j                  S r   )r   r   r   r9   r    s     r,   r   zSwinDropPath.forward  s    FFFr+   c                 6    d                     | j                  S )Nzp={})formatr   r8   s    r,   
extra_reprzSwinDropPath.extra_repr  s    }}T^,,,r+   r   )r#   r$   r%   r&   r   floatrV   r'   r   r   strr   r   r   s   @r,   r   r     s        bb# #(5/ #T # # # # # #GU\ Gel G G G G-C - - - - - - - -r+   r   c                        e Zd Z fdZd Z	 	 	 ddej        deej                 deej                 dee	         d	e
ej                 f
d
Z xZS )SwinSelfAttentionc                    t                                                       ||z  dk    rt          d| d| d          || _        t	          ||z            | _        | j        | j        z  | _        t          |t          j	        j
                  r|n||f| _        t          j        t          j        d| j        d         z  dz
  d| j        d         z  dz
  z  |                    | _        t          j        | j        d                   }t          j        | j        d                   }t          j        t'          ||gd                    }t          j        |d          }|d d d d d f         |d d d d d f         z
  }	|	                    ddd                                          }	|	d d d d dfxx         | j        d         dz
  z  cc<   |	d d d d dfxx         | j        d         dz
  z  cc<   |	d d d d dfxx         d| j        d         z  dz
  z  cc<   |	                    d	          }
|                     d
|
           t          j        | j        | j        |j                  | _        t          j        | j        | j        |j                  | _        t          j        | j        | j        |j                  | _        t          j        |j                  | _         d S )Nr   zThe hidden size (z6) is not a multiple of the number of attention heads ()r?   r   ij)indexingrB   relative_position_indexr   )!rU   rV   
ValueErrornum_attention_headsr   attention_head_sizeall_head_sizer   r   r   r   rI   r   r\   r'   r]   relative_position_bias_tablearangestackr   r   rF   rG   sumregister_bufferr   qkv_biasquerykeyvaluerd   attention_probs_dropout_probrf   )r9   rh   rt   	num_headsrI   coords_hcoords_wcoordscoords_flattenrelative_coordsr   rj   s              r,   rV   zSwinSelfAttention.__init__  s   ?akCkk_hkkk   $- #&sY#7#7 !58PP%k;?3KLLlKKS^`kRl 	 -/LKT-a0014T=Ma=P9PST9TUW`aa-
 -
)
 < 0 344< 0 344Xx&:TJJJKKvq11(AAAt4~aaaqqqj7QQ)11!Q::EEGG111a   D$4Q$7!$;;   111a   D$4Q$7!$;;   111a   A(8(;$;a$??   "1"5"5b"9"968OPPPYt143EFO\\\
9T/1C&/ZZZYt143EFO\\\
z&"EFFr+   c                     |                                 d d         | j        | j        fz   }|                    |          }|                    dddd          S )NrB   r   r?   r   r   )rp   r   r   rE   rF   )r9   xnew_x_shapes      r,   transpose_for_scoresz&SwinSelfAttention.transpose_for_scores  sP    ffhhssmt'?AY&ZZFF;yyAq!$$$r+   NFr    attention_mask	head_maskoutput_attentionsrl   c                 f   |j         \  }}}|                     |          }|                     |                     |                    }	|                     |                     |                    }
|                     |          }t          j        ||	                    dd                    }|t          j	        | j
                  z  }| j        | j                            d                   }|                    | j        d         | j        d         z  | j        d         | j        d         z  d          }|                    ddd                                          }||                    d          z   }|v|j         d         }|                    ||z  || j        ||          }||                    d                              d          z   }|                    d| j        ||          }t&          j                            |d          }|                     |          }|||z  }t          j        ||
          }|                    dddd                                          }|                                d d         | j        fz   }|                    |          }|r||fn|f}|S )NrB   r   r   r?   rs   r   )rD   r   r   r   r   r'   matmulr   mathsqrtr   r   r   rE   rI   rF   rG   r   r   r   rx   softmaxrf   rp   r   )r9   r    r   r   r   rJ   rt   rM   mixed_query_layer	key_layervalue_layerquery_layerattention_scoresrelative_position_bias
mask_shapeattention_probscontext_layernew_context_layer_shapeoutputss                      r,   r   zSwinSelfAttention.forward  s    )6(;%
C JJ}55--dhh}.E.EFF	//

=0I0IJJ//0ABB !<Y5H5HR5P5PQQ+di8P.Q.QQ!%!B4C_CdCdegChCh!i!7!<!<Q$"21"55t7G7JTM]^_M`7`bd"
 "
 "8!?!?1a!H!H!S!S!U!U+.D.N.Nq.Q.QQ%'-a0J/44j(*d6NPSUX     0.2J2J12M2M2W2WXY2Z2ZZ/44R9QSVX[\\ -//0@b/II ,,77  -	9O_kBB%--aAq99DDFF"/"4"4"6"6ss";t?Q>S"S%**+BCC6G]=/22mM]r+   NNF)r#   r$   r%   rV   r   r'   r   r   r(   r   r   r   r   r   s   @r,   r   r     s        #G #G #G #G #GJ% % % 7;15,16 6|6 !!236 E-.	6
 $D>6 
u|	6 6 6 6 6 6 6 6r+   r   c                   P     e Zd Z fdZdej        dej        dej        fdZ xZS )SwinSelfOutputc                     t                                                       t          j        ||          | _        t          j        |j                  | _        d S r   )rU   rV   r   r   denserd   r   rf   r9   rh   rt   rj   s      r,   rV   zSwinSelfOutput.__init__0  sD    YsC((
z&"EFFr+   r    input_tensorrl   c                 Z    |                      |          }|                     |          }|S r   r  rf   )r9   r    r  s      r,   r   zSwinSelfOutput.forward5  s*    

=11]33r+   r#   r$   r%   rV   r'   r   r   r   r   s   @r,   r
  r
  /  sn        G G G G G
U\  RWR^        r+   r
  c                        e Zd Z fdZd Z	 	 	 ddej        deej                 deej                 dee	         d	e
ej                 f
d
Z xZS )SwinAttentionc                     t                                                       t          ||||          | _        t	          ||          | _        t                      | _        d S r   )rU   rV   r   r9   r
  r   setpruned_heads)r9   rh   rt   r   rI   rj   s        r,   rV   zSwinAttention.__init__=  sQ    %fc9kJJ	$VS11EEr+   c                    t          |          dk    rd S t          || j        j        | j        j        | j                  \  }}t          | j        j        |          | j        _        t          | j        j        |          | j        _        t          | j        j	        |          | j        _	        t          | j
        j        |d          | j
        _        | j        j        t          |          z
  | j        _        | j        j        | j        j        z  | j        _        | j                            |          | _        d S )Nr   r   rs   )lenr   r9   r   r   r  r   r   r   r   r   r  r   union)r9   headsindexs      r,   prune_headszSwinAttention.prune_headsC  s    u::??F7490$)2OQUQb
 
u
 -TY_eDD	*49=%@@	,TY_eDD	.t{/@%QOOO )-	(EE

(R	%"&)"?$)B_"_	 -33E::r+   NFr    r   r   r   rl   c                     |                      ||||          }|                     |d         |          }|f|dd          z   }|S )Nr   r   )r9   r   )r9   r    r   r   r   self_outputsattention_outputr  s           r,   r   zSwinAttention.forwardU  sO     yy	K\]];;|AFF#%QRR(88r+   r  )r#   r$   r%   rV   r  r'   r   r   r(   r   r   r   r   r   s   @r,   r  r  <  s        " " " " "; ; ;* 7;15,1
 
|
 !!23
 E-.	

 $D>
 
u|	
 
 
 
 
 
 
 
r+   r  c                   B     e Zd Z fdZdej        dej        fdZ xZS )SwinIntermediatec                 $   t                                                       t          j        |t	          |j        |z                      | _        t          |j        t                    rt          |j                 | _        d S |j        | _        d S r   )rU   rV   r   r   r   	mlp_ratior  r   
hidden_actr   r   intermediate_act_fnr  s      r,   rV   zSwinIntermediate.__init__c  sx    YsC(83(>$?$?@@
f'-- 	9'-f.?'@D$$$'-'8D$$$r+   r    rl   c                 Z    |                      |          }|                     |          }|S r   )r  r%  r   s     r,   r   zSwinIntermediate.forwardk  s,    

=1100??r+   r  r   s   @r,   r!  r!  b  s^        9 9 9 9 9U\ el        r+   r!  c                   B     e Zd Z fdZdej        dej        fdZ xZS )
SwinOutputc                     t                                                       t          j        t	          |j        |z            |          | _        t          j        |j                  | _	        d S r   )
rU   rV   r   r   r   r#  r  rd   re   rf   r  s      r,   rV   zSwinOutput.__init__r  sT    Ys6#3c#9::C@@
z&"<==r+   r    rl   c                 Z    |                      |          }|                     |          }|S r   r  r   s     r,   r   zSwinOutput.forwardw  s*    

=11]33r+   r  r   s   @r,   r(  r(  q  s^        > > > > >
U\ el        r+   r(  c                        e Zd Zd fd	Zd Zd Zd Z	 	 	 ddej        d	e	e
e
f         d
eej                 dee         dee         de	ej        ej        f         fdZ xZS )	SwinLayerr   c                    t                                                       |j        | _        || _        |j        | _        || _        t          j        ||j                  | _	        t          |||| j                  | _        |j        dk    rt          |j                  nt          j                    | _        t          j        ||j                  | _        t#          ||          | _        t'          ||          | _        d S )Neps)rI   r   )rU   rV   chunk_size_feed_forward
shift_sizerI   r   r   rb   layer_norm_epslayernorm_beforer  	attentiondrop_path_rater   Identityr   layernorm_afterr!  intermediater(  r   )r9   rh   rt   r   r   r1  rj   s         r,   rV   zSwinLayer.__init__~  s    '-'E$$!- 0 "Sf6K L L L&vsI4K[\\\@F@UX[@[@[f&;<<<acalanan!|CV5JKKK,VS99 --r+   c                    t          |          | j        k    rnt          d          | _        t          j                                        r&t	          j         t	          j        |                    nt          |          | _        d S d S Nr   )minrI   r   r1  r'   ru   rv   tensor)r9   r   s     r,   set_shift_and_window_sizez#SwinLayer.set_shift_and_window_size  sv      D$444'llDO=BY=Q=Q=S=Sn	%,'788999Y\]mYnYn  54r+   c           	         | j         dk    rwt          j        d||df||          }t          d| j                   t          | j         | j                    t          | j          d           f}t          d| j                   t          | j         | j                    t          | j          d           f}d}|D ]}	|D ]}
||d d |	|
d d f<   |dz  }t          || j                  }|                    d| j        | j        z            }|                    d          |                    d          z
  }|                    |dk    t          d                                        |dk    t          d                    }nd }|S )Nr   r   r   rB   r?   g      Yr   )
r1  r'   r]   slicerI   rO   rE   r   masked_fillr   )r9   rK   rL   r   r   img_maskheight_sliceswidth_slicescountheight_slicewidth_slicemask_windows	attn_masks                r,   get_attn_maskzSwinLayer.get_attn_mask  s   ?Q{Avua#8fUUUHa$**++t''$/)9::t&--M a$**++t''$/)9::t&--L
 E -  #/  K@EHQQQk111<=QJEE ,Hd6FGGL',,R1ADDT1TUUL$..q11L4J4J14M4MMI!--i1neFmmLLXXYbfgYginorisisttIIIr+   c                     | j         || j         z  z
  | j         z  }| j         || j         z  z
  | j         z  }ddd|d|f}t          j                            ||          }||fS r:  )rI   r   rx   r   )r9   r    rK   rL   	pad_right
pad_bottomr   s          r,   r   zSwinLayer.maybe_pad  sp    %0@(@@DDTT	&$2B)BBdFVV
Ay!Z8
))-DDj((r+   NFr    r   r   r   always_partitionrl   c                    |s|                      |           n	 |\  }}|                                \  }}	}
|}|                     |          }|                    ||||
          }|                     |||          \  }}|j        \  }	}}}	| j        dk    r&t          j        || j         | j         fd          }n|}t          || j
                  }|                    d| j
        | j
        z  |
          }|                     |||j        |j                  }|                     ||||          }|d         }|                    d| j
        | j
        |
          }t          || j
        ||          }| j        dk    r$t          j        || j        | j        fd          }n|}|d         dk    p|d         dk    }|r&|d d d |d |d d f                                         }|                    |||z  |
          }||                     |          z   }|                     |          }|                     |          }||                     |          z   }|r
||d	         fn|f}|S )
Nr   )r   r?   )shiftsdimsrB   r   )r   r   rA   r   )r=  rp   r3  rE   r   rD   r1  r'   rollrO   rI   rI  r   r   r4  rQ   rG   r   r7  r8  r   )r9   r    r   r   r   rM  rK   rL   rJ   r   channelsshortcutr   
height_pad	width_padshifted_hidden_stateshidden_states_windowsrH  attention_outputsr  attention_windowsshifted_windows
was_paddedlayer_outputlayer_outputss                            r,   r   zSwinLayer.forward  s      	**+;<<<<("/"4"4"6"6
Ax --m<<%**:vuhOO %)NN=&%$P$P!z&3&9#:y!?Q$)J}tFVY]YhXhEipv$w$w$w!!$1! !11FHX Y Y 5 : :2t?ORVRb?bdl m m&&	)<EZEa ' 
 
	 !NN!9iK\ + 
 
 -Q/,11"d6FHXZbcc():D<LjZcdd ?Q %
?DOUYUdCelr s s s /]Q&;*Q-!*;
 	V 1!!!WfWfufaaa2G H S S U U-22:v~xXX 4>>2C#D#DD++M::((66$t{{<'@'@@@Qf'8';<<XdWfr+   )r   NFF)r#   r$   r%   rV   r=  rI  r   r'   r   r   r   r   r(   r   r   r   r   s   @r,   r,  r,  }  s        . . . . . .    8) ) ) 26,1+0A A|A  S/A E-.	A
 $D>A #4.A 
u|U\)	*A A A A A A A Ar+   r,  c                        e Zd Z fdZ	 	 	 ddej        deeef         deej	                 dee
         dee
         d	eej                 fd
Z xZS )	SwinStagec                 2   t                                                       | _        | _        t	          j        fdt          |          D                       | _        | |t          j                  | _	        nd | _	        d| _
        d S )Nc           
      ^    g | ])}t          |d z  dk    rdn	j        d z            *S )r?   r   )rh   rt   r   r   r1  )r,  rI   ).0irh   rt   r   r   s     r,   
<listcomp>z&SwinStage.__init__.<locals>.<listcomp>   sa     	 	 	  !%5'%&UaZZqqf6HA6M  	 	 	r+   )rt   r   F)rU   rV   rh   rt   r   
ModuleListrangeblocksrb   
downsamplepointing)	r9   rh   rt   r   depthr   r   ri  rj   s	    ``` `  r,   rV   zSwinStage.__init__  s    m	 	 	 	 	 	 	 u	 	 	
 
 !(j)9sr|\\\DOO"DOr+   NFr    r   r   r   rM  rl   c                 *   |\  }}t          | j                  D ](\  }}	|||         nd }
 |	|||
||          }|d         })|}| j        -|dz   dz  |dz   dz  }}||||f}|                     ||          }n||||f}|||f}|r||dd          z  }|S )Nr   r   r?   )	enumeraterh  ri  )r9   r    r   r   r   rM  rK   rL   rd  layer_modulelayer_head_maskr]  !hidden_states_before_downsamplingheight_downsampledwidth_downsampledr   stage_outputss                    r,   r   zSwinStage.forward  s     )(55 	- 	-OA|.7.CillO(L/BSUe M *!,MM,9)?&5;aZA4EPQ	VWGW 1!'0BDU V OO,MO_``MM!' >&(IK\] 	/]122..Mr+   r^  )r#   r$   r%   rV   r'   r   r   r   r   r(   r   r   r   r   s   @r,   r`  r`    s            : 26,1+0 |  S/ E-.	
 $D> #4. 
u|	       r+   r`  c                        e Zd Z fdZ	 	 	 	 	 	 ddej        deeef         deej	                 dee
         d	ee
         d
ee
         dee
         dee
         deeef         fdZ xZS )SwinEncoderc                     t                                                       t          j                   _         _        d t          j        dj        t          j                            D             t          j         fdt           j                  D                        _        d _        d S )Nc                 6    g | ]}|                                 S r*   )item)rc  r   s     r,   re  z(SwinEncoder.__init__.<locals>.<listcomp>:  s     ^^^Aqvvxx^^^r+   r   c                 t   g | ]}t          t          j        d |z  z            d         d |z  z  d         d |z  z  fj        |         j        |         t          j        d|                   t          j        d|dz                               |j        dz
  k     rt          nd          S )r?   r   r   N)rh   rt   r   rk  r   r   ri  )r`  r   r^   depthsr   r   
num_layersr   )rc  i_layerrh   dprrZ   r9   s     r,   re  z(SwinEncoder.__init__.<locals>.<listcomp><  s         !F,q'z9::&/lq'z&BIaLUVX_U_D`%a -0$.w7!#fmHWH&=">">V]S`U\_`U`S`EaAbAb"bc4;doPQ>Q4Q4Q//X\    r+   F)rU   rV   r  rz  r{  rh   r'   linspacer5  r   r   rf  rg  layersgradient_checkpointing)r9   rh   rZ   r}  rj   s   ```@r,   rV   zSwinEncoder.__init__6  s    fm,,^^63H#fmJ\J\!]!]^^^m        %T_55  
 
 ',###r+   NFTr    r   r   r   output_hidden_states(output_hidden_states_before_downsamplingrM  return_dictrl   c	           	      l   |rdnd }	|rdnd }
|rdnd }|r?|j         \  }}} |j        |g||R  }|                    dddd          }|	|fz  }	|
|fz  }
t          | j                  D ]\  }}|||         nd }| j        r'| j        r |                     |j        |||||          }n ||||||          }|d         }|d         }|d         }|d         |d         f}|rP|rN|j         \  }}} |j        |g|d         |d         f|R  }|                    dddd          }|	|fz  }	|
|fz  }
nC|rA|s?|j         \  }}} |j        |g||R  }|                    dddd          }|	|fz  }	|
|fz  }
|r||dd          z  }|st          d ||	|fD                       S t          ||	||
	          S )
Nr*   r   r   r   r?   r   rB   c              3      K   | ]}||V  	d S r   r*   )rc  vs     r,   	<genexpr>z&SwinEncoder.forward.<locals>.<genexpr>  s(      mmq_`_l_l_l_l_lmmr+   )r   r    r!   r"   )rD   rE   rF   rm  r  r  r   _gradient_checkpointing_func__call__tupler   )r9   r    r   r   r   r  r  rM  r  all_hidden_statesall_reshaped_hidden_statesall_self_attentionsrJ   r   r   reshaped_hidden_staterd  rn  ro  r]  rp  r   s                         r,   r   zSwinEncoder.forwardL  s    #7@BBD+?%IRRT"$5?bb4 	C)6)<&J;$6M$6z$bDT$bVa$b$b$b!$9$A$A!Q1$M$M!-!11&+@*BB&(55 *	9 *	9OA|.7.CillO* t}  $ A A )!$#%$! ! !-!#3_FWYi! ! *!,M0=a0@- -a 0 1" 57H7LM# G(P G-N-T*
A{ )O(I(N)"3A"68I!8L!M)OZ) ) )% )>(E(EaAq(Q(Q%!&G%II!*/D.FF**% G.V G-:-@*
A{(:(::(fHX(fZe(f(f(f%(=(E(EaAq(Q(Q%!m%55!*/D.FF*  9#}QRR'88# 	nmm]4EGZ$[mmmmmm ++*#=	
 
 
 	
r+   )NFFFFT)r#   r$   r%   rV   r'   r   r   r   r   r(   r   r   r   r   r   r   s   @r,   ru  ru  5  s        , , , , ,4 26,1/4CH+0&*K
 K
|K
  S/K
 E-.	K

 $D>K
 'tnK
 3;4.K
 #4.K
 d^K
 
u''	(K
 K
 K
 K
 K
 K
 K
 K
r+   ru  c                   .    e Zd ZdZeZdZdZdZdgZ	d Z
dS )SwinPreTrainedModelz
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    swinr   Tr`  c                    t          |t          j        t          j        f          rT|j        j                            d| j        j                   |j	         |j	        j        
                                 dS dS t          |t          j                  r?|j	        j        
                                 |j        j                            d           dS dS )zInitialize the weightsr   )meanstdNr   )r   r   r   r   weightdatanormal_rh   initializer_ranger   zero_rb   fill_)r9   modules     r,   _init_weightsz!SwinPreTrainedModel._init_weights  s    fry")455 	* M&&CT[5R&SSS{& &&((((( '&-- 	*K""$$$M$$S)))))	* 	*r+   N)r#   r$   r%   r&   r   config_classbase_model_prefixmain_input_namesupports_gradient_checkpointing_no_split_modulesr  r*   r+   r,   r  r    sM         
 L$O&*#$
* 
* 
* 
* 
*r+   r  aG  
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`SwinConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
a  
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
            for details.
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
            Whether to interpolate the pre-trained position encodings.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
z^The bare Swin Model transformer outputting raw hidden-states without any specific head on top.a  
        add_pooling_layer (`bool`, *optional*, defaults to `True`):
                Whether or not to apply pooling layer.
        use_mask_token (`bool`, *optional*, defaults to `False`):
                Whether or not to create and apply mask tokens in the embedding layer.
    c                   (    e Zd Zd fd	Zd Zd Z ee           ee	e
ede          	 	 	 	 	 	 	 dd	eej                 d
eej                 deej                 dee         dee         dedee         deee
f         fd                        Z xZS )	SwinModelTFc                    t                                          |           || _        t          |j                  | _        t          |j        d| j        dz
  z  z            | _        t          ||          | _
        t          || j
        j                  | _        t          j        | j        |j                  | _        |rt          j        d          nd | _        |                                  d S )Nr?   r   )ri   r.  )rU   rV   rh   r  rz  r{  r   r^   num_featuresrS   rk   ru  r[   encoderr   rb   r2  	layernormAdaptiveAvgPool1dpooler	post_init)r9   rh   add_pooling_layerri   rj   s       r,   rV   zSwinModel.__init__  s       fm,, 0119L3M MNN(OOO"64?+EFFd&7V=RSSS1BLb*1--- 	r+   c                     | j         j        S r   rk   rX   r8   s    r,   get_input_embeddingszSwinModel.get_input_embeddings      //r+   c                     |                                 D ]/\  }}| j        j        |         j                            |           0dS )z
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        N)itemsr  layerr4  r  )r9   heads_to_pruner  r  s       r,   _prune_headszSwinModel._prune_heads  sU    
 +0022 	C 	CLE5Lu%/;;EBBBB	C 	Cr+   vision)
checkpointoutput_typer  modalityexpected_outputNr   r   r   r   r  r   r  rl   c                 ~   ||n| j         j        }||n| j         j        }||n| j         j        }|t	          d          |                     |t          | j         j                            }|                     |||          \  }}	| 	                    ||	||||          }
|
d         }| 
                    |          }d}| j        >|                     |                    dd                    }t          j        |d          }|s||f|
dd         z   }|S t          |||
j        |
j        |
j                  S )	z
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
        Nz You have to specify pixel_values)r   r   )r   r   r  r  r   r   r?   )r   r/   r    r!   r"   )rh   r   r  use_return_dictr   get_head_maskr  rz  rk   r  r  r  r   r'   r   r.   r    r!   r"   )r9   r   r   r   r   r  r   r  embedding_outputr   encoder_outputssequence_outputpooled_outputr   s                 r,   r   zSwinModel.forward  s   , 2C1N--TXT_Tq$8$D  $+Jj 	 &1%<kk$+B]?@@@ &&y#dk6H2I2IJJ	-1__/Tl .= .
 .
** ,,/!5# ' 
 
 *!,..99;" KK(A(A!Q(G(GHHM!M-;;M 	%}58KKFM-')7&1#2#I
 
 
 	
r+   )TFNNNNNFN)r#   r$   r%   rV   r  r  r   SWIN_INPUTS_DOCSTRINGr   _CHECKPOINT_FOR_DOCr.   _CONFIG_FOR_DOC_EXPECTED_OUTPUT_SHAPEr   r'   r(   r   r   r   r   r   r   r   s   @r,   r  r    sR            0 0 0C C C +*+@AA&#$.   596:15,0/3).&*>
 >
u01>
 "%"23>
 E-.	>

 $D>>
 'tn>
 #'>
 d^>
 
uo%	&>
 >
 >
  BA>
 >
 >
 >
 >
r+   r  aW  Swin Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://arxiv.org/abs/2111.09886).

    <Tip>

    Note that we provide a script to pre-train this model on custom data in our [examples
    directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).

    </Tip>
    c                       e Zd Z fdZ ee           eee          	 	 	 	 	 	 	 dde	e
j                 de	e
j                 de	e
j                 de	e         d	e	e         d
ede	e         deeef         fd                        Z xZS )SwinForMaskedImageModelingc                    t                                          |           t          |dd          | _        t	          |j        d|j        dz
  z  z            }t          j        t          j	        ||j
        dz  |j        z  d          t          j        |j
                            | _        |                                  d S )NFT)r  ri   r?   r   )in_channelsout_channelsr   )rU   rV   r  r  r   r^   r{  r   
Sequentialr   encoder_striderM   PixelShuffledecoderr  )r9   rh   r  rj   s      r,   rV   z#SwinForMaskedImageModeling.__init__Q  s       fdSSS	6+aF4E4I.JJKK}I(v7La7ORXRe7est   OF122	
 
 	r+   )r  r  NFr   r   r   r   r  r   r  rl   c           	         ||n| j         j        }|                     |||||||          }|d         }	|	                    dd          }	|	j        \  }
}}t          j        |dz            x}}|	                    |
|||          }	|                     |	          }d}|| j         j	        | j         j
        z  }|                    d||          }|                    | j         j
        d                              | j         j
        d                              d                                          }t          j                            ||d	          }||z                                  |                                d
z   z  | j         j        z  }|s|f|dd         z   }||f|z   n|S t'          |||j        |j        |j                  S )aI  
        bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`):
            Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).

        Returns:

        Examples:
        ```python
        >>> from transformers import AutoImageProcessor, SwinForMaskedImageModeling
        >>> import torch
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-base-simmim-window6-192")
        >>> model = SwinForMaskedImageModeling.from_pretrained("microsoft/swin-base-simmim-window6-192")

        >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
        >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
        >>> # create random boolean mask of shape (batch_size, num_patches)
        >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()

        >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
        >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
        >>> list(reconstructed_pixel_values.shape)
        [1, 3, 192, 192]
        ```N)r   r   r   r  r   r  r   r   r?   rn   rB   none)r   gh㈵>)r2   r3   r    r!   r"   )rh   r  r  r   rD   r   floorrw   r  r   rg   repeat_interleaver   rG   r   rx   l1_lossr   rM   r1   r    r!   r"   )r9   r   r   r   r   r  r   r  r  r  rJ   rM   sequence_lengthrK   rL   reconstructed_pixel_valuesmasked_im_lossrp   r   reconstruction_lossr   s                        r,   r   z"SwinForMaskedImageModeling.forwarda  s   R &1%<kk$+B]))+/!5%=#  
 
 "!*)33Aq994C4I1
L/OS$8999)11*lFTYZZ &*\\/%B%B"&;)T[-CCD-55b$EEO11$+2H!LL""4;#91==1	  #%-"7"7F`lr"7"s"s1D8==??488::PTCTUX\XcXppN 	Z02WQRR[@F3A3M^%..SYY,5!/)#*#A
 
 
 	
r+   r  )r#   r$   r%   rV   r   r  r   r1   r  r   r'   r(   r   r   r   r   r   r   r   s   @r,   r  r  D  s.             +*+@AA+HWfggg 596:15,0/3).&*T
 T
u01T
 "%"23T
 E-.	T

 $D>T
 'tnT
 #'T
 d^T
 
u33	4T
 T
 T
 hg BAT
 T
 T
 T
 T
r+   r  a  
    Swin Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
    the [CLS] token) e.g. for ImageNet.

    <Tip>

        Note that it's possible to fine-tune Swin on higher resolution images than the ones it has been trained on, by
        setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
        position embeddings to the higher resolution.

    </Tip>
    c                       e Zd Z fdZ ee           eeee	e
          	 	 	 	 	 	 	 ddeej                 deej                 deej                 dee         d	ee         d
edee         deeef         fd                        Z xZS )SwinForImageClassificationc                 @   t                                          |           |j        | _        t          |          | _        |j        dk    r$t          j        | j        j        |j                  nt          j                    | _	        | 
                                 d S r:  )rU   rV   
num_labelsr  r  r   r   r  r6  
classifierr  )r9   rh   rj   s     r,   rV   z#SwinForImageClassification.__init__  s        +f%%	 EKDUXYDYDYBIdi,f.?@@@_a_j_l_l 	
 	r+   )r  r  r  r  NFr   r   labelsr   r  r   r  rl   c                    ||n| j         j        }|                     ||||||          }|d         }	|                     |	          }
d}|Z| j         j        f| j        dk    rd| j         _        nN| j        dk    r7|j        t          j        k    s|j        t          j	        k    rd| j         _        nd| j         _        | j         j        dk    rWt                      }| j        dk    r1 ||
                                |                                          }n ||
|          }n| j         j        dk    rGt                      } ||
                    d| j                  |                    d                    }n*| j         j        dk    rt                      } ||
|          }|s|
f|dd         z   }||f|z   n|S t          ||
|j        |j        |j        	          S )
a  
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        N)r   r   r  r   r  r   
regressionsingle_label_classificationmulti_label_classificationrB   r?   )r2   r:   r    r!   r"   )rh   r  r  r  problem_typer  r   r'   longr   r
   squeezer	   rE   r   r=   r    r!   r"   )r9   r   r   r  r   r  r   r  r  r  r:   r2   loss_fctr   s                 r,   r   z"SwinForImageClassification.forward  s   . &1%<kk$+B]))/!5%=#  
 
  
//{'/?a''/;DK,,_q((flej.H.HFL\a\eLeLe/LDK,,/KDK,{'<77"99?a''#8FNN$4$4fnn6F6FGGDD#8FF33DD)-JJJ+--xB @ @&++b//RR)-III,..x// 	FY,F)-)9TGf$$vE(!/)#*#A
 
 
 	
r+   r  )r#   r$   r%   rV   r   r  r   _IMAGE_CLASS_CHECKPOINTr=   r  _IMAGE_CLASS_EXPECTED_OUTPUTr   r'   r(   
LongTensorr   r   r   r   r   r   s   @r,   r  r    s;             +*+@AA*-$4	   5915-1,0/3).&*@
 @
u01@
 E-.@
 )*	@

 $D>@
 'tn@
 #'@
 d^@
 
u//	0@
 @
 @
  BA@
 @
 @
 @
 @
r+   r  zM
    Swin backbone, to be used with frameworks like DETR and MaskFormer.
    c                   |     e Zd Zdef fdZd Z	 	 	 ddej        dee	         dee	         dee	         d	e
f
d
Z xZS )SwinBackbonerh   c                 6   t                                                     t                                                     j        gfdt	          t          j                            D             z   | _        t                    | _	        t          | j	        j                  | _        i }t          | j        | j                  D ]\  }}t!          j        |          ||<   t!          j        |          | _        |                                  d S )Nc                 D    g | ]}t          j        d |z  z            S )r?   )r   r^   )rc  rd  rh   s     r,   re  z)SwinBackbone.__init__.<locals>.<listcomp>-  s.    1r1r1rST#f6FA6M2N2N1r1r1rr+   )rU   rV   _init_backboner^   rg  r  rz  r  rS   rk   ru  r[   r  zip_out_featuresrR  r   rb   
ModuleDicthidden_states_normsr  )r9   rh   r  stagerM   rj   s    `   r,   rV   zSwinBackbone.__init__)  s      v&&&#-.1r1r1r1rX]^abhbo^p^pXqXq1r1r1rr(00"64?+EFF !#&t'94=#I#I 	D 	DE<)+l)C)C&&#%=1D#E#E  	r+   c                     | j         j        S r   r  r8   s    r,   r  z!SwinBackbone.get_input_embeddings:  r  r+   Nr   r  r   r  rl   c           
         ||n| j         j        }||n| j         j        }||n| j         j        }|                     |          \  }}|                     ||d|dddd          }|j        }d}	t          | j        |          D ]\  }
}|
| j	        v r|j
        \  }}}}|                    dddd                                          }|                    |||z  |          } | j        |
         |          }|                    ||||          }|                    dddd                                          }|	|fz  }	|s|	f}|r||j        fz  }|S t!          |	|r|j        nd|j        	          S )
aK  
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, AutoBackbone
        >>> import torch
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224")
        >>> model = AutoBackbone.from_pretrained(
        ...     "microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"]
        ... )

        >>> inputs = processor(image, return_tensors="pt")
        >>> outputs = model(**inputs)
        >>> feature_maps = outputs.feature_maps
        >>> list(feature_maps[-1].shape)
        [1, 768, 7, 7]
        ```NT)r   r   r  r  rM  r  r*   r   r?   r   r   )feature_mapsr    r!   )rh   r  r  r   rk   r  r"   r  stage_namesout_featuresrD   rF   rG   rE   r  r    r   r!   )r9   r   r  r   r  r  r   r  r    r  r  hidden_staterJ   rM   rK   rL   r   s                    r,   r   zSwinBackbone.forward=  s   @ &1%<kk$+B]$8$D  $+Jj 	 2C1N--TXT_Tq-1__\-J-J**,,/!%59!  	
 	
  6#&t'7#G#G 	0 	0E<))):F:L7
L&%+33Aq!Q??JJLL+00Ve^\ZZ>t7>|LL+00VULYY+33Aq!Q??JJLL/ 	"_F# 37022M%3GQ'//T)
 
 
 	
r+   )NNN)r#   r$   r%   r   rV   r  r'   r   r   r   r   r   r   r   s   @r,   r  r  "  s        z      "0 0 0 04,0&*J
 J
lJ
 'tnJ
 $D>	J

 d^J
 
J
 J
 J
 J
 J
 J
 J
 J
r+   r  )r   F)Nr&   collections.abcr   r   r5   dataclassesr   typingr   r   r   r'   torch.utils.checkpointr   torch.nnr   r	   r
   activationsr   modeling_outputsr   modeling_utilsr   pytorch_utilsr   r   r   utilsr   r   r   r   r   r   r   utils.backbone_utilsr   configuration_swinr   
get_loggerr#   loggerr  r  r  r  r  r   r.   r1   r=   rO   rQ   r   rS   rW   r   r   r   r   r   r   r   r
  r  r!  r(  r,  r`  ru  r  SWIN_START_DOCSTRINGr  r  r  r  r  r*   r+   r,   <module>r     s   & %       ! ! ! ! ! ! ) ) ) ) ) ) ) ) ) )            A A A A A A A A A A ! ! ! ! ! ! . . . . . . - - - - - - [ [ [ [ [ [ [ [ [ [                  2 1 1 1 1 1 * * * * * * 
	H	%	%  ? %  C 1  K K K K K K K K@  K  K  K  K  Kk  K  K  KF )# )# )# )# )#K )# )# )#X  K  K  K  K  K  K  K  KF	 	 	  Y- Y- Y- Y- Y-RY Y- Y- Y-x(- (- (- (- (-") (- (- (-V3 3 3 3 3ry 3 3 3n U\ e T V[Vb    *- - - - -29 - - -a a a a a	 a a aH
 
 
 
 
RY 
 
 
# # # # #BI # # #L    ry   	 	 	 	 	 	 	 	z z z z z	 z z zz8 8 8 8 8	 8 8 8vb
 b
 b
 b
 b
") b
 b
 b
J* * * * */ * * *2	  0 d	 	a
 a
 a
 a
 a
# a
 a
	 	a
H   g
 g
 g
 g
 g
!4 g
 g
 g
T   V
 V
 V
 V
 V
!4 V
 V
 V
r  	 _
 _
 _
 _
 _
& _
 _
 _
 _
 _
r+   