
    g                         d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ dd	lmZmZ  ej        e          Z G d
 dee          Z G d de
          ZdS )z$Swin Transformer model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indicesc                   `     e Zd ZdZdZdddZdddd	g d
g ddddddddddddddf fd	Z xZS )
SwinConfiga  
    This is the configuration class to store the configuration of a [`SwinModel`]. It is used to instantiate a Swin
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Swin
    [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 4):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        embed_dim (`int`, *optional*, defaults to 96):
            Dimensionality of patch embedding.
        depths (`list(int)`, *optional*, defaults to `[2, 2, 6, 2]`):
            Depth of each layer in the Transformer encoder.
        num_heads (`list(int)`, *optional*, defaults to `[3, 6, 12, 24]`):
            Number of attention heads in each layer of the Transformer encoder.
        window_size (`int`, *optional*, defaults to 7):
            Size of windows.
        mlp_ratio (`float`, *optional*, defaults to 4.0):
            Ratio of MLP hidden dimensionality to embedding dimensionality.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether or not a learnable bias should be added to the queries, keys and values.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings and encoder.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        drop_path_rate (`float`, *optional*, defaults to 0.1):
            Stochastic depth rate.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
            `"selu"` and `"gelu_new"` are supported.
        use_absolute_embeddings (`bool`, *optional*, defaults to `False`):
            Whether or not to add absolute position embeddings to the patch embeddings.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        encoder_stride (`int`, *optional*, defaults to 32):
            Factor to increase the spatial resolution by in the decoder head for masked image modeling.
        out_features (`List[str]`, *optional*):
            If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
            (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
            corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
            same order as defined in the `stage_names` attribute.
        out_indices (`List[int]`, *optional*):
            If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
            many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
            If unset and `out_features` is unset, will default to the last stage. Must be in the
            same order as defined in the `stage_names` attribute.

    Example:

    ```python
    >>> from transformers import SwinConfig, SwinModel

    >>> # Initializing a Swin microsoft/swin-tiny-patch4-window7-224 style configuration
    >>> configuration = SwinConfig()

    >>> # Initializing a model (with random weights) from the microsoft/swin-tiny-patch4-window7-224 style configuration
    >>> model = SwinModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```swin	num_heads
num_layers)num_attention_headsnum_hidden_layers      r   `   )   r      r   )r   r            g      @Tg        g?geluFg{Gz?gh㈵>    Nc                 R    t                      j        di | || _        || _        || _        || _        || _        t          |          | _        || _	        || _
        || _        |	| _        |
| _        || _        || _        || _        || _        || _        || _        || _        t+          |dt          |          dz
  z  z            | _        dgd t/          dt          |          dz             D             z   | _        t3          ||| j                  \  | _        | _        d S )Nr      stemc                     g | ]}d | S )stage ).0idxs     g/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/swin/configuration_swin.py
<listcomp>z'SwinConfig.__init__.<locals>.<listcomp>   s    &Z&Z&Z}s}}&Z&Z&Z    )out_featuresout_indicesstage_namesr#   )super__init__
image_size
patch_sizenum_channels	embed_dimdepthslenr   r   window_size	mlp_ratioqkv_biashidden_dropout_probattention_probs_dropout_probdrop_path_rate
hidden_actuse_absolute_embeddingslayer_norm_epsinitializer_rangeencoder_strideinthidden_sizeranger+   r   _out_features_out_indices)selfr.   r/   r0   r1   r2   r   r4   r5   r6   r7   r8   r9   r:   r;   r=   r<   r>   r)   r*   kwargs	__class__s                        r&   r-   zSwinConfig.__init__o   s7   . 	""6"""$$("f++"&" #6 ,H),$'>$,!2, y1Vq+AABB"8&Z&ZaVWX@Y@Y&Z&Z&ZZ0Z%;DL\1
 1
 1
-D---r(   )__name__
__module____qualname____doc__
model_typeattribute_mapr-   __classcell__)rF   s   @r&   r   r      s        F FP J  +) M || ..%( %)1
 1
 1
 1
 1
 1
 1
 1
 1
 1
r(   r   c                       e Zd Z ej        d          Zedeeee	ef         f         fd            Z
edefd            ZdS )SwinOnnxConfigz1.11returnc                 0    t          ddddddfg          S )Npixel_valuesbatchr0   heightwidth)r   r   r   r   r   rD   s    r&   inputszSwinOnnxConfig.inputs   s.    WHQX!Y!YZ
 
 	
r(   c                     dS )Ng-C6?r#   rV   s    r&   atol_for_validationz"SwinOnnxConfig.atol_for_validation   s    tr(   N)rG   rH   rI   r   parsetorch_onnx_minimum_versionpropertyr   strr?   rW   floatrY   r#   r(   r&   rO   rO      s        !.v!6!6
WS#X%6 67 
 
 
 X
 U    X  r(   rO   N)rJ   collectionsr   typingr   	packagingr   configuration_utilsr   onnxr	   utilsr
   utils.backbone_utilsr   r   
get_loggerrG   loggerr   rO   r#   r(   r&   <module>rh      s   + * # # # # # #             3 3 3 3 3 3             c c c c c c c c 
	H	%	%A
 A
 A
 A
 A
$&6 A
 A
 A
H    Z     r(   