
    g(                     j    d Z ddlmZ ddlmZ ddlmZ  ej        e          Z	 G d de          Z
dS )zStarcoder2 model configuration   )PretrainedConfig)rope_config_validation)loggingc                   V     e Zd ZdZdZdgZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )Starcoder2Configa  
    This is the configuration class to store the configuration of a [`Starcoder2Model`]. It is used to instantiate a
    Starcoder2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the [bigcode/starcoder2-7b](https://huggingface.co/bigcode/starcoder2-7b) model.


    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 49152):
            Vocabulary size of the Starcoder2 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Starcoder2Model`]
        hidden_size (`int`, *optional*, defaults to 3072):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 12288):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 30):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 24):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 2):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used with. Starcoder2's sliding window attention
            allows sequence of up to 4096*32 tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        norm_epsilon (`float`, *optional*, defaults to 1e-05):
            Epsilon value for the layer norm
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        bos_token_id (`int`, *optional*, defaults to 50256):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 50256):
            The id of the "end-of-sequence" token.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        sliding_window (`int`, *optional*):
            Sliding window attention window size. If not specified, will default to `None` (no sliding window).
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        residual_dropout (`float`, *optional*, defaults to 0.0):
            Residual connection dropout value.
        embedding_dropout (`float`, *optional*, defaults to 0.0):
            Embedding dropout.
        use_bias (`bool`, *optional*, defaults to `True`):
            Whether to use bias term on linear layers of the model.


    ```python
    >>> from transformers import Starcoder2Model, Starcoder2Config

    >>> # Initializing a Starcoder2 7B style configuration
    >>> configuration = Starcoder2Config()

    >>> # Initializing a model from the Starcoder2 7B style configuration
    >>> model = Starcoder2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
starcoder2past_key_values       0           gelu_pytorch_tanh   Vy?h㈵>TP       @N        c                    || _         || _        || _        || _        || _        || _        || _        || _        || _        || _	        |	| _
        |
| _        || _        || _        || _        || _        || _        || _        | j        d| j        v r| j        d         | j        d<   t%          |             t'                      j        d||d| d S )Ntype	rope_type)bos_token_ideos_token_id )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headssliding_windowuse_biasnum_key_value_heads
hidden_actinitializer_rangenorm_epsilon	use_cache
rope_thetarope_scalingattention_dropoutresidual_dropoutembedding_dropoutr   super__init__)selfr   r   r    r!   r"   r%   r&   r   r'   r(   r)   r   r   r*   r+   r#   r,   r-   r.   r$   kwargs	__class__s                         s/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/starcoder2/configuration_starcoder2.pyr0   zStarcoder2Config.__init__   s
   0 %'>$&!2!2#6 , #6 $!2("$(!2 0!2 (Vt7H-H-H-1->v-FDk*t$$$ 	
%%	
 	
 	
 	
 	
 	
 	
    )r
   r   r   r   r   r   r   r   r   r   Tr   r   r   NNr   r   r   T)__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencer0   __classcell__)r3   s   @r4   r   r      s        k kZ J#4"5 & $"+4
 4
 4
 4
 4
 4
 4
 4
 4
 4
r5   r   N)r9   configuration_utilsr   modeling_rope_utilsr   utilsr   
get_loggerr6   loggerr   r   r5   r4   <module>rB      s    % $ 3 3 3 3 3 3 9 9 9 9 9 9       
	H	%	%e
 e
 e
 e
 e
' e
 e
 e
 e
 e
r5   