
    gL                         d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
  e
j        e          Z G d d	e          Z G d
 de          ZdS )zSqueezeBERT model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingc                   P     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )SqueezeBertConfiga  
    This is the configuration class to store the configuration of a [`SqueezeBertModel`]. It is used to instantiate a
    SqueezeBERT model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the SqueezeBERT
    [squeezebert/squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the SqueezeBERT model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`SqueezeBertModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`BertModel`] or [`TFBertModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):

        pad_token_id (`int`, *optional*, defaults to 0):
            The ID of the token in the word embedding to use as padding.
        embedding_size (`int`, *optional*, defaults to 768):
            The dimension of the word embedding vectors.

        q_groups (`int`, *optional*, defaults to 4):
            The number of groups in Q layer.
        k_groups (`int`, *optional*, defaults to 4):
            The number of groups in K layer.
        v_groups (`int`, *optional*, defaults to 4):
            The number of groups in V layer.
        post_attention_groups (`int`, *optional*, defaults to 1):
            The number of groups in the first feed forward network layer.
        intermediate_groups (`int`, *optional*, defaults to 4):
            The number of groups in the second feed forward network layer.
        output_groups (`int`, *optional*, defaults to 4):
            The number of groups in the third feed forward network layer.

    Examples:

    ```python
    >>> from transformers import SqueezeBertConfig, SqueezeBertModel

    >>> # Initializing a SqueezeBERT configuration
    >>> configuration = SqueezeBertConfig()

    >>> # Initializing a model (with random weights) from the configuration above
    >>> model = SqueezeBertModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    squeezebert:w           gelu皙?      {Gz?-q=r         c                 H    t                      j        dd|i| || _        || _        || _        || _        || _        || _        || _        || _	        |	| _
        |
| _        || _        || _        || _        || _        || _        || _        || _        || _        || _        d S )Npad_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsembedding_sizeq_groupsk_groupsv_groupspost_attention_groupsintermediate_groupsoutput_groups)selfr   r   r   r    r"   r!   r#   r$   r%   r&   r'   r(   r   r)   r*   r+   r,   r-   r.   r/   kwargs	__class__s                         u/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/squeezebert/configuration_squeezebert.pyr   zSqueezeBertConfig.__init__g   s    0 	==l=f===$&!2#6 $!2#6 ,H)'>$.!2,,   %:"#6 *    )r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   )__name__
__module____qualname____doc__
model_typer   __classcell__)r2   s   @r3   r
   r
      s        F FP J %( #+,+ ,+ ,+ ,+ ,+ ,+ ,+ ,+ ,+ ,+r4   r
   c                   J    e Zd Zedeeeeef         f         fd            ZdS )SqueezeBertOnnxConfigreturnc                 `    | j         dk    rdddd}nddd}t          d|fd|fd	|fg          S )
Nzmultiple-choicebatchchoicesequence)r   r   r   )r   r   	input_idsattention_masktoken_type_ids)taskr   )r0   dynamic_axiss     r3   inputszSqueezeBertOnnxConfig.inputs   s]    9)))&8
CCLL&:66Ll+!<0!<0
 
 	
r4   N)r5   r6   r7   propertyr   strintrG   r   r4   r3   r<   r<      sL        
WS#X%6 67 
 
 
 X
 
 
r4   r<   N)r8   collectionsr   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerr5   loggerr
   r<   r   r4   r3   <module>rR      s    & % # # # # # #       3 3 3 3 3 3             
	H	%	%w+ w+ w+ w+ w+( w+ w+ w+v
 
 
 
 
J 
 
 
 
 
r4   