
    g4                         d Z ddlZddlmZ ddlmZ ddlmZ  ej        e	          Z
 G d de          Z G d	 d
e          Z G d de          ZdS )zSiglip model configuration    N)Union   )PretrainedConfig)loggingc                   z     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 d fd	Zedeee	j
        f         ddfd            Z xZS )SiglipTextConfiga6  
    This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a
    Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip
    [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`SiglipModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        max_position_embeddings (`int`, *optional*, defaults to 64):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        pad_token_id (`int`, *optional*, defaults to 1):
            The id of the padding token in the vocabulary.
        bos_token_id (`int`, *optional*, defaults to 49406):
            The id of the beginning-of-sequence token in the vocabulary.
        eos_token_id (`int`, *optional*, defaults to 49407):
            The id of the end-of-sequence token in the vocabulary.

    Example:

    ```python
    >>> from transformers import SiglipTextConfig, SiglipTextModel

    >>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration
    >>> configuration = SiglipTextConfig()

    >>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration
    >>> model = SiglipTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```siglip_text_model }           @   gelu_pytorch_tanhư>               c                      t                      j        d|
||d| || _        || _        || _        || _        || _        || _        || _        || _	        |	| _
        d S )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsmax_position_embeddingslayer_norm_eps
hidden_actattention_dropout)selfr   r   r   r   r    r!   r#   r"   r$   r   r   r   kwargs	__class__s                 k/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/siglip/configuration_siglip.pyr   zSiglipTextConfig.__init__S   sy    $ 	sl\hsslrsss$&!2!2#6 '>$,$!2    pretrained_model_name_or_pathreturnr   c                 N   |                      |            | j        |fi |\  }}|                    d          dk    r|d         }d|v rMt          | d          r=|d         | j        k    r,t
                              d|d          d| j         d            | j        |fi |S )N
model_typesigliptext_configYou are using a model of type   to instantiate a model of type N. This is not supported for all configurations of models and can yield errors._set_token_in_kwargsget_config_dictgethasattrr-   loggerwarning	from_dictclsr*   r&   config_dicts       r(   from_pretrainedz SiglipTextConfig.from_pretrainedq   s      (((1c12OZZSYZZV ??<((H44%m4K;&&73+E+E&+VbJcgjguJuJuNNr\1J r r>r r r  
 s}[33F333r)   )r
   r   r   r   r   r   r   r   r   r   r   r   __name__
__module____qualname____doc__r-   r   classmethodr   strosPathLiker>   __classcell__r'   s   @r(   r   r      s        3 3j %J  "& 3 3 3 3 3 3< 4E#r{BR<S 4bt 4 4 4 [4 4 4 4 4r)   r   c                   v     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 d fd	Zedeee	j
        f         ddfd            Z xZS )SiglipVisionConfiga'
  
    This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
    Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
    [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    Example:

    ```python
    >>> from transformers import SiglipVisionConfig, SiglipVisionModel

    >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
    >>> configuration = SiglipVisionConfig()

    >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
    >>> model = SiglipVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```siglip_vision_modelr   r   r   r         r   r   r   c                      t                      j        di | || _        || _        || _        || _        || _        || _        || _        |
| _	        |	| _
        || _        d S )Nr   )r   r   r   r   r   r    num_channels
patch_size
image_sizer$   r"   r#   )r%   r   r   r   r    rP   rR   rQ   r#   r"   r$   r&   r'   s               r(   r   zSiglipVisionConfig.__init__   ss     	""6"""&!2!2#6 ($$!2,$r)   r*   r+   r   c                 N   |                      |            | j        |fi |\  }}|                    d          dk    r|d         }d|v rMt          | d          r=|d         | j        k    r,t
                              d|d          d| j         d            | j        |fi |S )Nr-   r.   vision_configr0   r1   r2   r3   r;   s       r(   r>   z"SiglipVisionConfig.from_pretrained   s      (((1c12OZZSYZZV ??<((H44%o6K;&&73+E+E&+VbJcgjguJuJuNNr\1J r r>r r r  
 s}[33F333r)   )
r   r   r   r   r   rM   rN   r   r   r   r?   rI   s   @r(   rK   rK      s        - -^ 'J &% % % % % %6 4E#r{BR<S 4bt 4 4 4 [4 4 4 4 4r)   rK   c                   H     e Zd ZdZdZd fd	Zededefd            Z	 xZ
S )	SiglipConfigaC  
    [`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to
    instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip
    [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`SiglipTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import SiglipConfig, SiglipModel

    >>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration
    >>> configuration = SiglipConfig()

    >>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration
    >>> model = SiglipModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig
    >>> from transformers import SiglipTextConfig, SiglipVisionConfig

    >>> # Initializing a SiglipText and SiglipVision configuration
    >>> config_text = SiglipTextConfig()
    >>> config_vision = SiglipVisionConfig()

    >>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision)
    ```r.   Nc                     t                      j        di | |i }t                              d           |i }t                              d           t	          di || _        t          di || _        d| _        d S )NzQ`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.zU`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.g      ?r   )	r   r   r8   infor   r/   rK   rT   initializer_factor)r%   r/   rT   r&   r'   s       r(   r   zSiglipConfig.__init__  s    ""6"""KKKklll MKKoppp+::k::/@@-@@"%r)   r/   rT   c                 `     | d|                                 |                                 d|S )z
        Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision
        model configuration.

        Returns:
            [`SiglipConfig`]: An instance of a configuration object
        )r/   rT   r   )to_dict)r<   r/   rT   r&   s       r(   from_text_vision_configsz%SiglipConfig.from_text_vision_configs   s:     sf{2244MDYDYD[D[ff_efffr)   )NN)r@   rA   rB   rC   r-   r   rD   r   rK   r\   rH   rI   s   @r(   rV   rV      s        ' 'R J& & & & & &  	g3C 	gTf 	g 	g 	g [	g 	g 	g 	g 	gr)   rV   )rC   rF   typingr   configuration_utilsr   utilsr   
get_loggerr@   r8   r   rK   rV   r   r)   r(   <module>ra      s   !   				       3 3 3 3 3 3       
	H	%	%f4 f4 f4 f4 f4' f4 f4 f4R]4 ]4 ]4 ]4 ]4) ]4 ]4 ]4@Fg Fg Fg Fg Fg# Fg Fg Fg Fg Fgr)   