
    g?                     ^    d Z ddlmZ ddlmZ  ej        e          Z G d de          ZdS )zSegGpt model configuration   )PretrainedConfig)loggingc                   V     e Zd ZdZdZddddddd	d
dgdddddddddg ddf fd	Z xZS )SegGptConfiga  
    This is the configuration class to store the configuration of a [`SegGptModel`]. It is used to instantiate a SegGPT
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the SegGPT
    [BAAI/seggpt-vit-large](https://huggingface.co/BAAI/seggpt-vit-large) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        image_size (`List[int]`, *optional*, defaults to `[896, 448]`):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        mlp_dim (`int`, *optional*):
            The dimensionality of the MLP layer in the Transformer encoder. If unset, defaults to
            `hidden_size` * 4.
        drop_path_rate (`float`, *optional*, defaults to 0.1):
            The drop path rate for the dropout layers.
        pretrain_image_size (`int`, *optional*, defaults to 224):
            The pretrained size of the absolute position embeddings.
        decoder_hidden_size (`int`, *optional*, defaults to 64):
            Hidden size for decoder.
        use_relative_position_embeddings (`bool`, *optional*, defaults to `True`):
            Whether to use relative position embeddings in the attention layers.
        merge_index (`int`, *optional*, defaults to 2):
            The index of the encoder layer to merge the embeddings.
        intermediate_hidden_state_indices (`List[int]`, *optional*, defaults to `[5, 11, 17, 23]`):
            The indices of the encoder layers which we store as features for the decoder.
        beta (`float`, *optional*, defaults to 0.01):
            Regularization factor for SegGptLoss (smooth-l1 loss).

    Example:

    ```python
    >>> from transformers import SegGptConfig, SegGptModel

    >>> # Initializing a SegGPT seggpt-vit-large style configuration
    >>> configuration = SegGptConfig()

    >>> # Initializing a model (with random weights) from the seggpt-vit-large style configuration
    >>> model = SegGptModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```seggpti         gelug        g{Gz?gư>i  i  r   TNg?   @      )            g{Gz?c                     t                      j        di | |t          |          k    rt          d|d|          || _        || _        || _        || _        || _        || _	        || _
        || _        |	| _        |
| _        || _        || _        || _        || _        || _        || _        || _        || _        |t-          |dz            n|| _        d S )NzTMerge index must be less than the minimum encoder output index, but got merge_index=z' and intermediate_hidden_state_indices=    )super__init__min
ValueErrorhidden_sizenum_hidden_layersnum_attention_heads
hidden_acthidden_dropout_probinitializer_rangelayer_norm_eps
image_size
patch_sizenum_channelsqkv_biasdrop_path_ratepretrain_image_sizedecoder_hidden_size use_relative_position_embeddingsmerge_index!intermediate_hidden_state_indicesbetaintmlp_dim)selfr   r   r   r   r   r   r   r    r!   r"   r#   r,   r$   r%   r&   r'   r(   r)   r*   kwargs	__class__s                        k/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/seggpt/configuration_seggpt.pyr   zSegGptConfig.__init__]   s   . 	""6""">???? S[f  S  S  oP  S  S   '!2#6 $#6 !2,$$( ,#6 #6 0P-&1R.	/6s;?+++G    )__name__
__module____qualname____doc__
model_typer   __classcell__)r/   s   @r0   r   r      s        @ @D J :)-*9//)/L /L /L /L /L /L /L /L /L /Lr1   r   N)	r5   configuration_utilsr   utilsr   
get_loggerr2   loggerr   r   r1   r0   <module>r<      s    !   3 3 3 3 3 3       
	H	%	%tL tL tL tL tL# tL tL tL tL tLr1   