
    g7!                         d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
  e
j        e          Z G d d	e          Z G d
 de          ZdS )zPLBART model configuration    OrderedDict)Mapping   )PretrainedConfig)OnnxConfigWithPast)loggingc                   h     e Zd ZdZdZdgZdddZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )PLBartConfiga  
    This is the configuration class to store the configuration of a [`PLBartModel`]. It is used to instantiate an
    PLBART model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the PLBART
    [uclanlp/plbart-base](https://huggingface.co/uclanlp/plbart-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50005):
            Vocabulary size of the PLBART model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`PLBartModel`].
        d_model (`int`, *optional*, defaults to 768):
            Dimensionality of the layers and the pooler layer.
        encoder_layers (`int`, *optional*, defaults to 6):
            Number of encoder layers.
        decoder_layers (`int`, *optional*, defaults to 6):
            Number of decoder layers.
        encoder_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_ffn_dim (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        classifier_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for classifier.
        max_position_embeddings (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        encoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        decoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        scale_embedding (`bool`, *optional*, defaults to `True`):
            Scale embeddings by diving by sqrt(d_model).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models)
        forced_eos_token_id (`int`, *optional*, defaults to 2):
            The id of the token to force as the last generated token when `max_length` is reached. Usually set to
            `eos_token_id`.

    Example:

    ```python
    >>> from transformers import PLBartConfig, PLBartModel

    >>> # Initializing a PLBART uclanlp/plbart-base style configuration
    >>> configuration = PLBartConfig()

    >>> # Initializing a model (with random weights) from the uclanlp/plbart-base style configuration
    >>> model = PLBartModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```plbartpast_key_valuesencoder_attention_headsd_model)num_attention_headshidden_sizeU                      Tgelu   皙?{Gz?   r      c           	      ^   || _         || _        || _        || _        || _        || _        || _        || _        || _        || _	        || _
        || _        || _        || _        |	| _        |
| _        || _        || _        || _        || _         t)                      j        d|||||d| d S )N)pad_token_idbos_token_ideos_token_idis_encoder_decoderforced_eos_token_id )
vocab_sizemax_position_embeddingsr   encoder_ffn_dimencoder_layersr   decoder_ffn_dimdecoder_layersdecoder_attention_headsdropoutattention_dropoutactivation_dropoutactivation_functioninit_stdencoder_layerdropdecoder_layerdropclassifier_dropout	use_cachenum_hidden_layersscale_embeddingsuper__init__)selfr%   r&   r(   r'   r   r*   r)   r+   r1   r2   r4   r"   r/   r   r,   r-   r.   r0   r3   r6   r   r    r!   r#   kwargs	__class__s                             k/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/plbart/configuration_plbart.pyr8   zPLBartConfig.__init__j   s    8 %'>$.,'>$.,'>$!2"4#6  !2!2"4"!/. 	
%%%1 3	
 	
 	
 	
 	
 	
 	
    )r   r   r   r   r   r   r   r   r   r   TTr   r   r   r   r   r   r   Tr   r   r   r   )	__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferenceattribute_mapr8   __classcell__)r;   s   @r<   r   r      s        G GR J#4"5,EV_``M  $ " ""37
 7
 7
 7
 7
 7
 7
 7
 7
 7
r=   r   c                       e Zd Zedeeeeef         f         fd            Zedeeeeef         f         fd            ZdS )PLBartOnnxConfigreturnc                 8    t          ddddfddddfg          S )N	input_idsbatchsequencer   r   attention_maskr   r9   s    r<   inputszPLBartOnnxConfig.inputs   s9    'j99:!w:#>#>?
 
 	
r=   c                     | j         r!t          ddddfddddfddddfg          S t          ddddfddddfg          S )Nlast_hidden_staterK   rL   rM   	past_keys)r   r   encoder_last_hidden_state)use_pastr   rO   s    r<   outputszPLBartOnnxConfig.outputs   s    = 	(g**E*EF g*"="=>0g*2M2MN   (g**E*EF0g*2M2MN  r=   N)	r>   r?   r@   propertyr   strintrP   rV   r$   r=   r<   rG   rG      s        
WS#X%6 67 
 
 
 X
 gc3h&7!78    X  r=   rG   N)rA   collectionsr   typingr   configuration_utilsr   onnxr   utilsr	   
get_loggerr>   loggerr   rG   r$   r=   r<   <module>ra      s    !   # # # # # #       3 3 3 3 3 3 & & & & & &       
	H	%	%E
 E
 E
 E
 E
# E
 E
 E
P    )     r=   