
    gC                         d Z ddlZddlmZ ddlmZ ddlmZ  ej        e	          Z
 G d de          Z G d	 d
e          Z G d de          ZdS )zPix2Struct model configuration    N)Union   )PretrainedConfig)loggingc                        e Zd ZdZdZdgZddddZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Zede	e
ej        f         ddfd            Z xZS )Pix2StructTextConfiga  
    This is the configuration class to store the configuration of a [`Pix2StructTextModel`]. It is used to instantiate
    a Pix2Struct text model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Pix2Struct text decoder used by
    the [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 50244):
            Vocabulary size of the `Pix2Struct` text model. Defines the number of different tokens that can be
            represented by the `inputs_ids` passed when calling [`Pix2StructTextModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        d_kv (`int`, *optional*, defaults to 64):
            Dimensionality of the key, query, value projections in each attention head.
        d_ff (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        relative_attention_num_buckets (`int`, *optional*, defaults to 32):
            The number of buckets to use for each attention layer.
        relative_attention_max_distance (`int`, *optional*, defaults to 128):
            The maximum distance of the longer sequences for the bucket separation.
        dropout_rate (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-6):
            The epsilon used by the layer normalization layers.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        dense_act_fn (`Union[Callable, str]`, *optional*, defaults to `"gelu_new"`):
            The non-linear activation function (function or string).
        decoder_start_token_id (`int`, *optional*, defaults to 0):
            The id of the `decoder_start_token_id` token.
        use_cache (`bool`, *optional*, defaults to `False`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        pad_token_id (`int`, *optional*, defaults to 0):
            The id of the `padding` token.
        eos_token_id (`int`, *optional*, defaults to 1):
            The id of the `end-of-sequence` token.

    Example:

    ```python
    >>> from transformers import Pix2StructTextConfig, Pix2StructTextModel

    >>> # Initializing a Pix2StructTextConfig with google/pix2struct-base style configuration
    >>> configuration = Pix2StructTextConfig()

    >>> # Initializing a Pix2StructTextModel (with random weights) from the google/pix2struct-base style configuration
    >>> model = Pix2StructTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```pix2struct_text_modelpast_key_valueshidden_size	num_heads
num_layers)r   num_attention_headsnum_hidden_layersD     @                皙?ư>      ?gelu_newr   F   Tc           	         || _         || _        || _        || _        || _        || _        || _        || _        |	| _        |
| _	        || _
        || _        || _        || _        || _         t                      j        d|||||d| d S )N)pad_token_ideos_token_iddecoder_start_token_idtie_word_embeddings
is_decoder )
vocab_sizer   d_kvd_ffr   r   relative_attention_num_bucketsrelative_attention_max_distancedropout_ratelayer_norm_epsiloninitializer_factor	use_cacher   r   dense_act_fnsuper__init__)selfr#   r   r$   r%   r   r   r&   r'   r(   r)   r*   r,   r   r+   r   r   r    r!   kwargs	__class__s                       s/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/pix2struct/configuration_pix2struct.pyr.   zPix2StructTextConfig.__init__`   s    , %&		$".L+/N,("4"4"(&<# ) 	
%%#9 3!	
 	
 	
 	
 	
 	
 	
    !pretrainehidden_size_name_or_pathreturnr   c                 N   |                      |            | j        |fi |\  }}|                    d          dk    r|d         }d|v rMt          | d          r=|d         | j        k    r,t
                              d|d          d| j         d            | j        |fi |S )N
model_type
pix2structtext_configYou are using a model of type   to instantiate a model of type N. This is not supported for all configurations of models and can yield errors._set_token_in_kwargsget_config_dictgethasattrr7   loggerwarning	from_dictclsr4   r0   config_dicts       r2   from_pretrainedz$Pix2StructTextConfig.from_pretrained   s     	  (((1c12S^^W]^^V ??<((L88%m4K;&&73+E+E&+VbJcgjguJuJuNNr\1J r r>r r r  
 s}[33F333r3   )r   r   r   r   r   r   r   r   r   r   r   r   r   Fr   r   FT)__name__
__module____qualname____doc__r7   keys_to_ignore_at_inferenceattribute_mapr.   classmethodr   strosPathLikerH   __classcell__r1   s   @r2   r   r      s        : :x )J#4"5$*) M ')(+ !'0
 0
 0
 0
 0
 0
d 405c2;6F0G4	4 4 4 [4 4 4 4 4r3   r   c                        e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Zedeee	j
        f         ddfd            Z xZS )Pix2StructVisionConfiga  
    This is the configuration class to store the configuration of a [`Pix2StructVisionModel`]. It is used to
    instantiate a Pix2Struct vision model according to the specified arguments, defining the model architecture.
    Instantiating a configuration defaults will yield a similar configuration to that of the Pix2Struct-base
    [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        patch_embed_hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the input patch_embedding layer in the Transformer encoder.
        d_ff (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        d_kv (`int`, *optional*, defaults to 64):
            Dimensionality of the key, query, value projections per attention head.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        dense_act_fn (`str` or `function`, *optional*, defaults to `"gelu_new"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        dropout_rate (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 1e-10):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        seq_len (`int`, *optional*, defaults to 4096):
            Maximum sequence length (here number of patches) supported by the model.
        relative_attention_num_buckets (`int`, *optional*, defaults to 32):
            The number of buckets to use for each attention layer.
        relative_attention_max_distance (`int`, *optional*, defaults to 128):
            The maximum distance (in tokens) to use for each attention layer.

    Example:

    ```python
    >>> from transformers import Pix2StructVisionConfig, Pix2StructVisionModel

    >>> # Initializing a Pix2StructVisionConfig with google/pix2struct-base style configuration
    >>> configuration = Pix2StructVisionConfig()

    >>> # Initializing a Pix2StructVisionModel (with random weights) from the google/pix2struct-base style configuration
    >>> model = Pix2StructVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```pix2struct_vision_modelr   r   r   r   r   r           绽|=r      r   r   c                     t                      j        di | || _        || _        || _        |	| _        || _        || _        || _        || _	        |
| _
        || _        || _        || _        || _        || _        || _        d S )Nr"   )r-   r.   r   patch_embed_hidden_sizer%   r(   r   r   initializer_ranger*   attention_dropoutlayer_norm_epsr,   seq_lenr&   r'   r$   )r/   r   r\   r%   r$   r   r   r,   r_   r(   r^   r]   r*   r`   r&   r'   r0   r1   s                    r2   r.   zPix2StructVisionConfig.__init__   s    & 	""6"""&'>$	(!2#6 !2"4!2,(.L+/N,			r3   r4   r5   r   c                 N   |                      |            | j        |fi |\  }}|                    d          dk    r|d         }d|v rMt          | d          r=|d         | j        k    r,t
                              d|d          d| j         d            | j        |fi |S )Nr7   r8   vision_configr:   r;   r<   r=   rE   s       r2   rH   z&Pix2StructVisionConfig.from_pretrained	  s     	  (((1c12S^^W]^^V ??<((L88%o6K;&&73+E+E&+VbJcgjguJuJuNNr\1J r r>r r r  
 s}[33F333r3   )r   r   r   r   r   r   r   r   rX   rX   rY   r   rZ   r   r   )rI   rJ   rK   rL   r7   r.   rO   r   rP   rQ   rR   rH   rS   rT   s   @r2   rV   rV      s        8 8t +J  #')(+!# # # # # #J 405c2;6F0G4	4 4 4 [4 4 4 4 4r3   rV   c                   V     e Zd ZdZdZ	 	 	 	 	 	 	 d fd	Zed	ed
efd            Z	 xZ
S )Pix2StructConfiga1	  
    [`Pix2StructConfig`] is the configuration class to store the configuration of a
    [`Pix2StructForConditionalGeneration`]. It is used to instantiate a Pix2Struct model according to the specified
    arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will
    yield a similar configuration to that of the Pix2Struct-base
    [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`Pix2StructTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`Pix2StructVisionConfig`].
        initializer_factor (`float`, *optional*, defaults to 1.0):
            Factor to multiply the initialization range with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        is_vqa (`bool`, *optional*, defaults to `False`):
            Whether the model has been fine-tuned for VQA or not.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import Pix2StructConfig, Pix2StructForConditionalGeneration

    >>> # Initializing a Pix2StructConfig with google/pix2struct-base style configuration
    >>> configuration = Pix2StructConfig()

    >>> # Initializing a Pix2StructForConditionalGeneration (with random weights) from the google/pix2struct-base style configuration
    >>> model = Pix2StructForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a Pix2StructConfig from a Pix2StructTextConfig and a Pix2StructVisionConfig

    >>> # Initializing a Pix2Struct text and Pix2Struct vision configuration
    >>> config_text = Pix2StructTextConfig()
    >>> config_vision = Pix2StructVisionConfig()

    >>> config = Pix2StructConfig.from_text_vision_configs(config_text, config_vision)
    ```r8   Nr   {Gz?FTc                     t                      j        d||d| |i }t                              d           |i }t                              d           t	          di || _        t          di || _        | j        j        | _        | j        j	        | _	        | j        j
        | _
        || _        || _        | j        | j        _        | j        | j        _        || _        d S )N)r    is_encoder_decoderzOtext_config is None. Initializing the Pix2StructTextConfig with default values.zSvision_config is None. Initializing the Pix2StructVisionConfig with default values.r"   )r-   r.   rB   infor   r9   rV   rb   r   r   r   r*   r]   is_vqa)
r/   r9   rb   r*   r]   ri   r    rg   r0   r1   s
            r2   r.   zPix2StructConfig.__init__P  s     	r-@UgrrkqrrrKKKijjj MKKmnnn/>>+>>3DDmDD&*&6&M# ,9 ,9"4!2-1-C*/3/E,r3   r9   rb   c                 `     | d|                                 |                                 d|S )z
        Instantiate a [`Pix2StructConfig`] (or a derived class) from pix2struct text model configuration and pix2struct
        vision model configuration.

        Returns:
            [`Pix2StructConfig`]: An instance of a configuration object
        )r9   rb   r"   )to_dict)rF   r9   rb   r0   s       r2   from_text_vision_configsz)Pix2StructConfig.from_text_vision_configst  s:     sf{2244MDYDYD[D[ff_efffr3   )NNr   re   FFT)rI   rJ   rK   rL   r7   r.   rO   r   rV   rl   rS   rT   s   @r2   rd   rd     s        - -^ J !" " " " " "H g.g?Ug g g [g g g g gr3   rd   )rL   rQ   typingr   configuration_utilsr   utilsr   
get_loggerrI   rB   r   rV   rd   r"   r3   r2   <module>rq      s   % $ 				       3 3 3 3 3 3       
	H	%	%I4 I4 I4 I4 I4+ I4 I4 I4Xt4 t4 t4 t4 t4- t4 t4 t4nbg bg bg bg bg' bg bg bg bg bgr3   