
    gq)                     ^    d Z ddlmZ ddlmZ  ej        e          Z G d de          ZdS )zPhi-3 model configuration   )PretrainedConfig)loggingc                   f     e Zd ZdZdZdgZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Zd Zd Z xZ	S )
Phi3Configa  
    This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the
    [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 32064):
            Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Phi3Model`].
        hidden_size (`int`, *optional*, defaults to 3072):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 8192):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        resid_pdrop (`float`, *optional*, defaults to 0.0):
            Dropout probability for mlp outputs.
        embd_pdrop (`int`, *optional*, defaults to 0.0):
            The dropout ratio for the embeddings.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio after computing the attention scores.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used with.
        original_max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model was trained with. This is used to determine the size of the
            original RoPE embeddings when using long scaling.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon value used for the RMSNorm.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`dict`, *optional*):
            The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
            contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
            the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
            divided by the number of attention heads divided by 2.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 32000):
            The id of the "end-of-sequence" token.
        pad_token_id (`int`, *optional*, defaults to 32000):
            The id of the padding token.
        sliding_window (`int`, *optional*):
            Sliding window attention window size. If `None`, no sliding window is applied.

    Example:

    ```python
    >>> from transformers import Phi3Model, Phi3Config

    >>> # Initializing a Phi-3 style configuration
    >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")

    >>> # Initializing a model from the configuration
    >>> model = Phi3Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```phi3past_key_values@}             N        silu   {Gz?h㈵>TF     @    }  c                    || _         || _        || _        || _        || _        ||}|| _        || _        || _        |	| _        |
| _	        || _
        || _        || _        || _        || _        || _        || _        |                                  |                                  || _         t)                      j        d||||d| d S )N)bos_token_ideos_token_idpad_token_idtie_word_embeddings )
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_headsresid_pdrop
embd_pdropattention_dropout
hidden_actmax_position_embeddings original_max_position_embeddingsinitializer_rangerms_norm_eps	use_cache
rope_thetarope_scaling_rope_scaling_adjustment_rope_scaling_validationsliding_windowsuper__init__)selfr   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r   r*   r+   r   r   r   r.   kwargs	__class__s                           g/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/phi3/configuration_phi3.pyr0   zPhi3Config.__init__o   s   4 %&!2!2#6 &"5#6 &$!2$'>$0P-!2("$(%%'''%%''', 	
%%% 3		
 	

 	
 	
 	
 	
 	
    c                 v    | j         dS | j                             dd          }||dv rd| j         d<   dS dS dS )zc
        Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
        Ntype)suyarnlongrope)r+   get)r1   rope_scaling_types     r4   r,   z#Phi3Config._rope_scaling_adjustment   s_     $F -11&$?? (->.-P-P(2Df%%% )(-P-Pr5   c                    | j         dS t          | j         t                    rt          | j                   dk    rt	          d| j                    | j                             dd          }| j                             dd          }| j                             dd          }||dvrt	          d|           t          |t                    rt          d	 |D                       st	          d
|           t          |          | j        | j	        z  dz  k    s2t	          d| j        | j	        z  dz   dt          |                     t          |t                    rt          d |D                       st	          d|           t          |          | j        | j	        z  dz  k    s2t	          d| j        | j	        z  dz   dt          |                     dS )z<
        Validate the `rope_scaling` configuration.
        Nr   ze`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, got r7   short_factorlong_factor)r:   z=`rope_scaling`'s type field must be one of ['longrope'], got c              3   N   K   | ] }t          |t          t          f          V  !d S N
isinstanceintfloat.0xs     r4   	<genexpr>z6Phi3Config._rope_scaling_validation.<locals>.<genexpr>   s0      SSAJq3,//SSSSSSr5   zC`rope_scaling`'s short_factor field must be a list of numbers, got    z5`rope_scaling`'s short_factor field must have length z, got c              3   N   K   | ] }t          |t          t          f          V  !d S rA   rB   rF   s     r4   rI   z6Phi3Config._rope_scaling_validation.<locals>.<genexpr>   s0      RRAJq3,//RRRRRRr5   zB`rope_scaling`'s long_factor field must be a list of numbers, got z4`rope_scaling`'s long_factor field must have length )
r+   rC   dictlen
ValueErrorr;   listallr   r   )r1   r<   rope_scaling_short_factorrope_scaling_long_factors       r4   r-   z#Phi3Config._rope_scaling_validation   s    $F$+T22 	c$:K6L6LPQ6Q6Q+(+ +   !-11&$??$($5$9$9.$$O$O!#'#4#8#8#M#M $(9(M(Mp]nppqqq0$77	SS9RSSSSS	 qVoqq   ,--1ATE]1]ab1bbb bHX\`\tHtxyHy  b  b  BE  F_  B`  B`  b  b   /66	RR9QRRRRR	 oUmoo   +,,0@DD\0\`a0aaa `tGW[_[sGswxGx  `  `  AD  E]  A^  A^  `  `   bar5   )r	   r
   r   r   r   Nr   r   r   r   r   r   r   r   TFr   Nr   r   r   N)
__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencer0   r,   r-   __classcell__)r3   s   @r4   r   r      s        P Pd J#4"5   $)-!/9
 9
 9
 9
 9
 9
v3 3 3& & & & & & &r5   r   N)	rV   configuration_utilsr   utilsr   
get_loggerrS   loggerr   r   r5   r4   <module>r^      s        3 3 3 3 3 3       
	H	%	%D D D D D! D D D D Dr5   