
    g>'                     f    d Z ddlmZ ddlZddlmZ ddlmZ ddl	m
Z
mZmZ  G d d	e          ZdS )
z&
Image/Text processor class for OWLv2
    )ListN   )ProcessorMixin)BatchEncoding)is_flax_availableis_tf_availableis_torch_availablec                   R     e Zd ZdZddgZdZdZ fdZdd
Zd Z	d Z
d Zd Z xZS )Owlv2Processora  
    Constructs an Owlv2 processor which wraps [`Owlv2ImageProcessor`] and [`CLIPTokenizer`]/[`CLIPTokenizerFast`] into
    a single processor that interits both the image processor and tokenizer functionalities. See the
    [`~OwlViTProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more information.

    Args:
        image_processor ([`Owlv2ImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`CLIPTokenizer`, `CLIPTokenizerFast`]):
            The tokenizer is a required input.
    image_processor	tokenizerOwlv2ImageProcessor)CLIPTokenizerCLIPTokenizerFastc                 L    t                                          ||           d S )N)super__init__)selfr   r   kwargs	__class__s       f/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/owlv2/processing_owlv2.pyr   zOwlv2Processor.__init__-   s#    )44444    N
max_lengthnpc                 D   |||t          d          |t          |t                    s0t          |t                    r.t          |d         t                    s | j        |f||d|g}nt          |t                    rt          |d         t                    rsg }t          d |D                       }|D ]T}	t          |	          |k    r|	dg|t          |	          z
  z  z   }	 | j        |	f||d|}
|                    |
           Unt          d          |dk    rBt          j
        d	 |D             d
          }t          j
        d |D             d
          }n"|dk    rWt                      rIddlm} |
                    d |D             d
          }|
                    d |D             d
          }n|dk    rUt                      rGddl}|                    d |D             d          }|                    d |D             d          }nj|dk    rUt#                      rGddl}|                    d |D             d
          }|                    d |D             d
          }nt          d          t)                      }
||
d<   ||
d<   |(t)                      }
 | j        |fd|i|j        }||
d<   | | j        |fd|i|}|||j        |
d<   |
S |||j        |
d<   |
S |||
S t)          t/          di ||          S )a
  
        Main method to prepare for the model one or several text(s) and image(s). This method forwards the `text` and
        `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode:
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
            `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            query_images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The query image to be prepared, one query image is expected per target image to be queried. Each image
                can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image
                should be of shape (C, H, W), where C is a number of channels, H and W are image height and width.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.
        Returns:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        NzXYou have to specify at least one text or query image or image. All three cannot be none.r   )paddingreturn_tensorsc                 ,    g | ]}t          |          S  )len).0ts     r   
<listcomp>z+Owlv2Processor.__call__.<locals>.<listcomp>b   s    &<&<&<!s1vv&<&<&<r    zLInput text should be a string, a list of strings or a nested list of stringsr   c                     g | ]
}|d          S 	input_idsr   r!   encodings     r   r#   z+Owlv2Processor.__call__.<locals>.<listcomp>o   s    +\+\+\hH[,A+\+\+\r   )axisc                     g | ]
}|d          S attention_maskr   r(   s     r   r#   z+Owlv2Processor.__call__.<locals>.<listcomp>p   s    0f0f0fPX:J1K0f0f0fr   jaxc                     g | ]
}|d          S r&   r   r(   s     r   r#   z+Owlv2Processor.__call__.<locals>.<listcomp>u   s    ,],],]xXk-B,],],]r   c                     g | ]
}|d          S r,   r   r(   s     r   r#   z+Owlv2Processor.__call__.<locals>.<listcomp>v   s    1g1g1gQY(;K2L1g1g1gr   ptc                     g | ]
}|d          S r&   r   r(   s     r   r#   z+Owlv2Processor.__call__.<locals>.<listcomp>{   s    &W&W&Wx'<&W&W&Wr   )dimc                     g | ]
}|d          S r,   r   r(   s     r   r#   z+Owlv2Processor.__call__.<locals>.<listcomp>|   s    +a+a+a8H5E,F+a+a+ar   tfc                     g | ]
}|d          S r&   r   r(   s     r   r#   z+Owlv2Processor.__call__.<locals>.<listcomp>   s    %V%V%Vh{&;%V%V%Vr   c                     g | ]
}|d          S r,   r   r(   s     r   r#   z+Owlv2Processor.__call__.<locals>.<listcomp>   s    *`*`*`(84D+E*`*`*`r   z/Target return tensor type could not be returnedr'   r-   r   query_pixel_valuespixel_values)datatensor_typer   )
ValueError
isinstancestrr   r   maxr    append	TypeErrorr   concatenater   	jax.numpynumpyr	   torchcatr   
tensorflowstackr   r   r9   dict)r   textimagesquery_imagesr   r   r   	encodingsmax_num_queriesr"   r)   r'   r-   jnprE   r5   r8   image_featuress                     r   __call__zOwlv2Processor.__call__1   s(   H <L0V^j   $$$ pD$)?)? p
SWXYSZ\`HaHa p+T^Dk'R`kkdjkkl		D$'' pJtAw,E,E p	 #&&<&<t&<&<&<"="=  / /A1vv003q66)A BB-t~ajQ_jjcijjH$$X..../   nooo%%N+\+\R[+\+\+\cdeee	!#0f0f\e0f0f0fmn!o!o!o5((->-@-@(''''''OO,],]S\,],],]deOff	!$1g1g]f1g1g1gno!p!p4'',>,@,@'!II&W&WY&W&W&W]^I__	!&+a+aW`+a+a+agh!i!i4''O,=,='''''HH%V%VI%V%V%V]^H__	!#*`*`V_*`*`*`gh!i!i !!RSSS$H$-H[!)7H%&#$H!5!5" "-;"?E" "  .@H)*1T1&bbb[abbN 2'5'BH^$O%&*<'5'BH^$O!9O d&<&<^&<&<.YYYYr   c                 &     | j         j        |i |S )z
        This method forwards all its arguments to [`OwlViTImageProcessor.post_process_object_detection`]. Please refer
        to the docstring of this method for more information.
        )r   post_process_object_detectionr   argsr   s      r   rS   z,Owlv2Processor.post_process_object_detection   s     
 Bt#A4R6RRRr   c                 &     | j         j        |i |S )z
        This method forwards all its arguments to [`OwlViTImageProcessor.post_process_one_shot_object_detection`].
        Please refer to the docstring of this method for more information.
        )r   #post_process_image_guided_detectionrT   s      r   rW   z2Owlv2Processor.post_process_image_guided_detection   s!    
 Ht#GXQWXXXr   c                 &     | j         j        |i |S )z
        This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r   batch_decoderT   s      r   rY   zOwlv2Processor.batch_decode   s    
 +t~*D;F;;;r   c                 &     | j         j        |i |S )z
        This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r   decoderT   s      r   r[   zOwlv2Processor.decode   s    
 %t~$d5f555r   )NNNr   r   )__name__
__module____qualname____doc__
attributesimage_processor_classtokenizer_classr   rQ   rS   rW   rY   r[   __classcell__)r   s   @r   r   r      s        
 
 $[1J1<O5 5 5 5 5mZ mZ mZ mZ`S S SY Y Y< < <6 6 6 6 6 6 6r   r   )r_   typingr   rD   r   processing_utilsr   tokenization_utils_baser   utilsr   r   r	   r   r   r   r   <module>rh      s               . . . . . . 4 4 4 4 4 4 K K K K K K K K K Kb6 b6 b6 b6 b6^ b6 b6 b6 b6 b6r   