
    gj"                     ^    d Z ddlmZ ddlmZ  ej        e          Z G d de          ZdS )zOLMo model configuration   )PretrainedConfig)loggingc                   Z     e Zd ZdZdZdgZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Zd Z xZS )
OlmoConfiga  
    This is the configuration class to store the configuration of a [`OlmoModel`]. It is used to instantiate an OLMo
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the [allenai/OLMo-7B-hf](https://huggingface.co/allenai/OLMo-7B-hf).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50304):
            Vocabulary size of the OLMo model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`OlmoModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 1):
            Padding token id.
        bos_token_id (`int`, *optional*):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 50279):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
            strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
            `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
            `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
            these scaling strategies behave:
            https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
            experimental feature, subject to breaking API changes in future versions.
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        clip_qkv (`float`, *optional*):
            If not `None`, elements of query, key and value attention states are clipped so that their
            absolute value does not exceed this value.

    ```python
    >>> from transformers import OlmoModel, OlmoConfig

    >>> # Initializing a OLMo 7B style configuration
    >>> configuration = OlmoConfig()

    >>> # Initializing a model from the OLMo 7B style configuration
    >>> model = OlmoModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```olmopast_key_values      +      Nsilu   {Gz?T   g  F     @        c                 F   || _         || _        || _        || _        || _        || _        ||}|| _        || _        |	| _        |
| _	        || _
        || _        |                                  || _        || _        || _         t!                      j        d||||d| d S )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_range	use_cache
rope_thetarope_scaling_rope_scaling_validationattention_biasattention_dropoutclip_qkvsuper__init__)selfr   r   r   r   r   r    r!   r   r"   r#   r   r   r   r   r$   r%   r'   r(   r)   kwargs	__class__s                        g/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/olmo/configuration_olmo.pyr+   zOlmoConfig.__init__n   s    . %'>$&!2!2#6  &"5#6 $!2"$(%%''',!2  	
%%% 3		
 	

 	
 	
 	
 	
 	
    c                    | j         dS t          | j         t                    rt          | j                   dk    rt	          d| j                    | j                             dd          }| j                             dd          }||dvrt	          d|           |t          |t                    r|dk    rt	          d	|           dS )
z<
        Validate the `rope_scaling` configuration.
        N   zN`rope_scaling` must be a dictionary with two fields, `type` and `factor`, got typefactor)lineardynamiczF`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got g      ?z7`rope_scaling`'s factor field must be a float > 1, got )r%   
isinstancedictlen
ValueErrorgetfloat)r,   rope_scaling_typerope_scaling_factors      r/   r&   z#OlmoConfig._rope_scaling_validation   s    $F$+T22 	c$:K6L6LPQ6Q6Qwdhduww   !-11&$??"/33HdCC$(9AV(V(VlYjll   &j9Le.T.T&XkorXrXrlWjllmmm YsXrr0   )r	   r
   r   r   r   Nr   r   r   Tr   Nr   Fr   NFr   N)	__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencer+   r&   __classcell__)r.   s   @r/   r   r      s        K KZ J#4"5   $!)3
 3
 3
 3
 3
 3
jn n n n n n nr0   r   N)	rB   configuration_utilsr   utilsr   
get_loggerr?   loggerr   r   r0   r/   <module>rJ      s   (   3 3 3 3 3 3       
	H	%	%Xn Xn Xn Xn Xn! Xn Xn Xn Xn Xnr0   