
    g                         d Z ddlmZ ddlmZ ddlmZ ddlmZ  ej	        e
          Z G d de          Z G d	 d
e          ZdS )zmT5 model configuration    )Mapping   )PretrainedConfig)OnnxSeq2SeqConfigWithPast)loggingc                   f     e Zd ZdZdZdgZdddddZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )	MT5Configa7  
    This is the configuration class to store the configuration of a [`MT5Model`] or a [`TFMT5Model`]. It is used to
    instantiate a mT5 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the mT5
    [google/mt5-small](https://huggingface.co/google/mt5-small) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Arguments:
        vocab_size (`int`, *optional*, defaults to 250112):
            Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`].
        d_model (`int`, *optional*, defaults to 512):
            Size of the encoder layers and the pooler layer.
        d_kv (`int`, *optional*, defaults to 64):
            Size of the key, query, value projections per attention head. In the conventional context, it is typically expected that `d_kv` has to be equal to `d_model // num_heads`.
            But in the architecture of mt5-small, `d_kv` is not equal to `d_model //num_heads`. The `inner_dim` of the projection layer will be defined as `num_heads * d_kv`.
        d_ff (`int`, *optional*, defaults to 1024):
            Size of the intermediate feed forward layer in each `T5Block`.
        num_layers (`int`, *optional*, defaults to 8):
            Number of hidden layers in the Transformer encoder.
        num_decoder_layers (`int`, *optional*):
            Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
        num_heads (`int`, *optional*, defaults to 6):
            Number of attention heads for each attention layer in the Transformer encoder.
        relative_attention_num_buckets (`int`, *optional*, defaults to 32):
            The number of buckets to use for each attention layer.
        relative_attention_max_distance (`int`, *optional*, defaults to 128):
            The maximum distance of the longer sequences for the bucket separation.
        dropout_rate (`float`, *optional*, defaults to 0.1):
            The ratio for all dropout layers.
        classifier_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for classifier.
        layer_norm_eps (`float`, *optional*, defaults to 1e-6):
            The epsilon used by the layer normalization layers.
        initializer_factor (`float`, *optional*, defaults to 1):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`):
            Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
    mt5past_key_valuesd_model	num_heads
num_layersd_kv)hidden_sizenum_attention_headsnum_hidden_layershead_dim     @         N          皙?ư>      ?
gated-geluTT5TokenizerFr              c           
      @   || _         || _        || _        || _        || _        ||n| j        | _        || _        || _        |	| _        |
| _	        || _
        || _        || _        || _        || _        | j                            d          }|d         | _        |d         dk    | _        t%          |          dk    r|d         dk    st%          |          dk    rt'          d| d          |d	k    rd
| _         t)                      j        d||||||d| d S )N-r   gatedr!      z`feed_forward_proj`: z is not a valid activation function of the dense layer. Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. 'gated-gelu' or 'relu'r   gelu_new)is_encoder_decodertokenizer_classtie_word_embeddingspad_token_ideos_token_iddecoder_start_token_id )
vocab_sizer   r   d_ffr   num_decoder_layersr   relative_attention_num_bucketsrelative_attention_max_distancedropout_rateclassifier_dropoutlayer_norm_epsiloninitializer_factorfeed_forward_proj	use_cachesplitdense_act_fnis_gated_actlen
ValueErrorsuper__init__)selfr0   r   r   r1   r   r2   r   r3   r4   r5   r7   r8   r9   r)   r:   r*   r+   r,   r-   r.   r6   kwargsact_info	__class__s                           e/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/mt5/configuration_mt5.pyrA   zMT5Config.__init__R   ss   2 %		$"4"@do 	 #.L+/N,("4"4"4!2")//44$RL$QK72x==1!!7!73x==1;L;L)(9 ) ) )   ,, *D 	
1+ 3%%#9	
 	
 	
 	
 	
 	
 	
    )r   r   r   r   r   Nr   r   r   r   r   r   r   TTr    Fr   r!   r   r"   )	__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferenceattribute_maprA   __classcell__)rE   s   @rF   r	   r	      s        + +Z J#4"5 *)	 M ')(+&%! -B
 B
 B
 B
 B
 B
 B
 B
 B
 B
rG   r	   c                       e Zd Zedeeeeef         f         fd            Zedefd            Zede	fd            Z
dS )MT5OnnxConfigreturnc                     ddddddd}| j         rd|d         d<   ddi|d	<   dd
d|d<   nddd|d	<   ddd|d<   | j         r|                     |d           |S )Nbatchencoder_sequence)r   r!   )	input_idsattention_maskz past_encoder_sequence + sequencerW   r!   r   decoder_input_idsz past_decoder_sequence + sequencedecoder_attention_maskdecoder_sequenceinputs)	direction)use_pastfill_with_past_key_values_)rB   common_inputss     rF   r[   zMT5OnnxConfig.inputs   s     %);<<").@AA
 
 = 	Z1SM*+A.23WM-.:AFh6i6iM2335<AS1T1TM-.:AFX6Y6YM23= 	O++MX+NNNrG   c                     dS )N   r/   rB   s    rF   default_onnx_opsetz MT5OnnxConfig.default_onnx_opset   s	     rrG   c                     dS )NgMb@?r/   rb   s    rF   atol_for_validationz!MT5OnnxConfig.atol_for_validation   s    trG   N)rH   rI   rJ   propertyr   strintr[   rc   floatre   r/   rG   rF   rQ   rQ      s        WS#X%6 67    X$ C    X U    X  rG   rQ   N)rK   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerrH   loggerr	   rQ   r/   rG   rF   <module>rp      s            3 3 3 3 3 3 - - - - - -       
	H	%	%y
 y
 y
 y
 y
  y
 y
 y
x    -     rG   