
    gn                     ^    d Z ddlmZ ddlmZ  ej        e          Z G d de          ZdS )zMRA model configuration   )PretrainedConfig)loggingc                   P     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )	MraConfigaw  
    This is the configuration class to store the configuration of a [`MraModel`]. It is used to instantiate an MRA
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Mra
    [uw-madison/mra-base-512-4](https://huggingface.co/uw-madison/mra-base-512-4) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50265):
            Vocabulary size of the Mra model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`MraModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 1):
            The vocabulary size of the `token_type_ids` passed when calling [`MraModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`.
        block_per_row (`int`, *optional*, defaults to 4):
            Used to set the budget for the high resolution scale.
        approx_mode (`str`, *optional*, defaults to `"full"`):
            Controls whether both low and high resolution approximations are used. Set to `"full"` for both low and
            high resolution and `"sparse"` for only low resolution.
        initial_prior_first_n_blocks (`int`, *optional*, defaults to 0):
            The initial number of blocks for which high resolution is used.
        initial_prior_diagonal_n_blocks (`int`, *optional*, defaults to 0):
            The number of diagonal blocks for which high resolution is used.

    Example:

    ```python
    >>> from transformers import MraConfig, MraModel

    >>> # Initializing a Mra uw-madison/mra-base-512-4 style configuration
    >>> configuration = MraConfig()

    >>> # Initializing a model (with random weights) from the uw-madison/mra-base-512-4 style configuration
    >>> model = MraModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```mraY           gelu皙?      {Gz?h㈵>absolute   full       c                 0    t                      j        d|||d| || _        |	| _        || _        || _        || _        || _        || _        || _	        || _
        || _        |
| _        || _        || _        || _        || _        || _        || _        d S )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizemax_position_embeddingshidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangetype_vocab_sizelayer_norm_epsposition_embedding_typeblock_per_rowapprox_modeinitial_prior_first_n_blocksinitial_prior_diagonal_n_blocks)selfr   r    r!   r"   r#   r$   r%   r&   r   r(   r'   r)   r*   r+   r,   r-   r.   r   r   r   kwargs	__class__s                         e/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/mra/configuration_mra.pyr   zMraConfig.__init__\   s    0 	sl\hsslrsss$'>$&!2#6 !2$#6 ,H)!2.,'>$*&,H)/N,,,    )r   r	   r
   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   )__name__
__module____qualname____doc__
model_typer   __classcell__)r1   s   @r2   r   r      s        ? ?B J %( # *%&()+*O *O *O *O *O *O *O *O *O *Or3   r   N)	r7   configuration_utilsr   utilsr   
get_loggerr4   loggerr   r   r3   r2   <module>r>      s      3 3 3 3 3 3       
	H	%	%nO nO nO nO nO  nO nO nO nO nOr3   