
    g>                         d Z ddlmZ ddlmZ ddlmZ  ej        e          Z	 G d de          Z
 G d d	e          Zd	dgZd
S )zMoshi model configuration   )PretrainedConfig)logging   )
AutoConfigc                   R     e Zd ZdZdZdgZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )MoshiDepthConfiga>  
    This is the configuration class to store the configuration of a [`MoshiDepthDecoder`]. It is used to instantiate a
    Moshi depth decoder model according to the specified arguments, defining the Moshi depth decoder config.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the MoshiDepthDecoder model. Defines the number of different tokens that can be
            represented by the `inputs_ids` passed when calling [`MoshiDepthDecoder`].
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the layers and the pooler layer of the depth decoder.
        input_size (`int`, *optional*, defaults to 4096):
            Dimensionality of the input hidden states. Used to connect the main decoder to the depth decoder.
        num_hidden_layers (`int`, *optional*, defaults to 6):
            Number of depth decoder layers.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the depth decoder block.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`.
        audio_vocab_size (`int`, *optional*, defaults to 2048):
            Vocabulary size of the audio part of model. Defines the number of different tokens that can be
            represented by the `audio_codes` passed when calling the Moshi models.
        max_position_embeddings (`int`, *optional*, defaults to 9):
            The maximum sequence length that this model might ever be used with. Typically, set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the depth decoder.
        head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
            The attention head dimension.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        sliding_window (`int`, *optional*, defaults to 8):
            Sliding window attention window size. If not specified, will default to `8`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        ffn_dim (`int`, *optional*, defaults to 5632):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the depth decoder block. Must be even.
        rms_norm_eps (`float`, *optional*, defaults to 1e-08):
            The epsilon used by the rms normalization layers.
        num_codebooks (`int`, *optional*, defaults to 8):
            The number of audio codebooks for each audio channels.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        kwargs (*optional*):
            Dictionary of keyword arguments. Notably:
                - **audio_encoder_config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
                  defines the audio encoder config.

    Example:

    ```python
    >>> from transformers import (
    ...     MoshiDepthConfig,
    ...     MoshiDepthDecoder,
    ... )

    >>> configuration = MoshiDepthConfig()

    >>> # Initializing a MoshiDepthDecoder (with random weights) from the kmhf/hf-moshiko style configuration
    >>> model = MoshiDepthDecoder(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```moshi_depthpast_key_values }              N   	   silu{Gz?T              :0yE>Fc                 v   || _         || _        || _        || _        || _        ||n|| _        || _        |	| _        |
p||z  | _        || _	        || _
        || _        || _        |dz  dk    rt          d| d          || _        || _        || _        || _         t%                      j        dd|i| d S )Nr      	`ffn_dim=` must be even.tie_word_embeddings )
vocab_sizehidden_size
input_sizenum_hidden_layersnum_attention_headsnum_key_value_headsmax_position_embeddings
hidden_acthead_diminitializer_range	use_cachesliding_windowattention_dropout
ValueErrorffn_dimrms_norm_epsnum_codebooksaudio_vocab_sizesuper__init__)selfr   r   r    r!   r"   r#   r/   r$   r%   r&   r'   r(   r)   r*   r,   r-   r.   r   kwargs	__class__s                       i/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/moshi/configuration_moshi.pyr1   zMoshiDepthConfig.__init__h   s    , %&$!2#6 :M:Y#6#6_r '>$$ FK3F$F!2",!2Q;!AAAABBB(* 0KK-@KFKKKKK    )r   r   r   r   r   Nr   r   r   Nr   Tr   r   r   r   r   F)__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencer1   __classcell__r4   s   @r5   r   r      s        I IV J#4"5   !!'*L *L *L *L *L *L *L *L *L *Lr6   r   c                        e Zd ZdZdZdZdgZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Zed             Z	e
defd            Z xZS )MoshiConfiga  
    This is the configuration class to store the configuration of a [`MoshiModel`]. It is used to instantiate a
    Moshi model according to the specified arguments, defining the audio encoder, Moshi depth decoder and Moshi decoder
    configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Moshiko model,
    e.g. [kmhf/hf-moshiko](https://huggingface.co/kmhf/hf-moshiko)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the MoshiDecoder model. Defines the number of different tokens that can be
            represented by the `inputs_ids` passed when calling [`MoshiDecoder`].
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimensionality of the layers and the pooler layer of the main decoder.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of decoder layers.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the main decoder block.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`.
        audio_vocab_size (`int`, *optional*):
            Vocabulary size of the audio part of model. Defines the number of different tokens that can be
            represented by the `audio_codes` passed when calling the Moshi models.
        max_position_embeddings (`int`, *optional*, defaults to 3000):
            The maximum sequence length that this model might ever be used with. Typically, set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
            The attention head dimension.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        sliding_window (`int`, *optional*, defaults to 3000):
            Sliding window attention window size. If not specified, will default to `3000`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        ffn_dim (`int`, *optional*, defaults to 22528):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the main decoder block. Must be even.
        rms_norm_eps (`float`, *optional*, defaults to 1e-08):
            The epsilon used by the rms normalization layers.
        num_codebooks (`int`, *optional*, defaults to 8):
            The number of audio codebooks for each audio channels.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        kwargs (*optional*):
            Dictionary of keyword arguments. Notably:
                - **audio_encoder_config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
                  defines the audio encoder config.
                - **depth__config** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
                  defines the depth decoder config.


    Example:

    ```python
    >>> from transformers import (
    ...     MoshiConfig,
    ...     MoshiForConditionalGeneration,
    ... )

    >>> configuration = MoshiConfig()

    >>> # Initializing a MoshiForConditionalGeneration (with random weights) from the kmhf/hf-moshiko style configuration
    >>> model = MoshiForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # Saving the model, including its configuration
    >>> model.save_pretrained("kmhf/hf-moshiko")

    >>> # loading model and config from pretrained folder
    >>> moshi_config = MoshiConfig.from_pretrained("kmhf/hf-moshiko")
    >>> model = MoshiForConditionalGeneration.from_pretrained("kmhf/hf-moshiko", config=moshi_config)
    ```moshiTr
   r   r       N       @r   r   r    X  r   r   Fc                    || _         || _        || _        || _        ||n|| _        || _        || _        |	| _        |
p||z  | _        || _	        || _
        || _        || _        |dz  dk    rt          d| d          || _        || _        || _        |                    di           }|                    dd          }t%          j        |fi || _        | j        | j        j        k    r t          d| d	| j        j         d
          || j        j        n|| _        |                    di           }|                    | j        |||d           t1          di || _         t5                      j        dd|i| d S )Nr   r   r   r   audio_encoder_configr;   mimiz`num_codebooks=zX` is greater than the maximum number of codebooks that the audio encoder can deal with (z). Please lower it.depth_decoder_config)r/   r    r   r.   r   r   )r   r   r!   r"   r#   r$   
rope_thetar%   r&   r'   r(   r)   r*   r+   r,   r-   r.   popr   	for_modelrG   codebook_sizer/   updater   rI   r0   r1   )r2   r   r   r!   r"   r#   r/   r$   rJ   r%   r&   r'   r(   r)   r*   r,   r-   r.   r   r3   rG   audio_encoder_model_typerI   r4   s                          r5   r1   zMoshiConfig.__init__   s   , %&!2#6 :M:Y#6#6_r '>$$$ FK3F$F!2",!2Q;!AAAABBB(*%zz*@"EE#7#;#;L&#Q#Q $.$89Q$j$jUi$j$j! 9 GGG F-  F  F  JN  Jc  Jq  F  F  F  
 8H7OD%33Ue 	  &zz*@"EE##$($9)(!.	 	
 	
 	
 %5$L$L7K$L$L!KK-@KFKKKKKr6   c                     | j         j        S )N)rG   sampling_rate)r2   s    r5   rQ   zMoshiConfig.sampling_rate6  s    (66r6   rG   c                 :     | dd|                                 i|S )z
        Instantiate a [`MoshiConfig`] (or a derived class) from an audio encoder configuration.

        Returns:
            [`MoshiConfig`]: An instance of a configuration object
        rG   r   )to_dict)clsrG   r3   s      r5   from_audio_encoder_configz%MoshiConfig.from_audio_encoder_config:  s9     s 
 
!5!=!=!?!?

 
 	
r6   )r   r   rB   rB   NNrC   rD   r   Nr   TrC   r   rE   r   r   F)r7   r8   r9   r:   r;   is_compositionr<   r1   propertyrQ   classmethodr   rU   r=   r>   s   @r5   r@   r@      s        U Un JN#4"5   $!'CL CL CL CL CL CLJ 7 7 X7 
.
 
 
 [
 
 
 
 
r6   r@   N)r:   configuration_utilsr   utilsr   auto.configuration_autor   
get_loggerr7   loggerr   r@   __all__r   r6   r5   <module>r_      s       3 3 3 3 3 3       0 0 0 0 0 0 
	H	%	%yL yL yL yL yL' yL yL yLxu
 u
 u
 u
 u
" u
 u
 u
p ,
-r6   