
    gl                         d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ  ej        e          Z G d	 d
e          Z G d de
          ZdS )zMobileViT model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)loggingc                   ^     e Zd ZdZdZdddg dg ddd	d
ddddddddddg dddf fd	Z xZS )MobileViTConfiga  
    This is the configuration class to store the configuration of a [`MobileViTModel`]. It is used to instantiate a
    MobileViT model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the MobileViT
    [apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        image_size (`int`, *optional*, defaults to 256):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 2):
            The size (resolution) of each patch.
        hidden_sizes (`List[int]`, *optional*, defaults to `[144, 192, 240]`):
            Dimensionality (hidden size) of the Transformer encoders at each stage.
        neck_hidden_sizes (`List[int]`, *optional*, defaults to `[16, 32, 64, 96, 128, 160, 640]`):
            The number of channels for the feature maps of the backbone.
        num_attention_heads (`int`, *optional*, defaults to 4):
            Number of attention heads for each attention layer in the Transformer encoder.
        mlp_ratio (`float`, *optional*, defaults to 2.0):
            The ratio of the number of channels in the output of the MLP to the number of channels in the input.
        expand_ratio (`float`, *optional*, defaults to 4.0):
            Expansion factor for the MobileNetv2 layers.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
        conv_kernel_size (`int`, *optional*, defaults to 3):
            The size of the convolutional kernel in the MobileViT layer.
        output_stride (`int`, *optional*, defaults to 32):
            The ratio of the spatial resolution of the output to the resolution of the input image.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the Transformer encoder.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for attached classifiers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        aspp_out_channels (`int`, *optional*, defaults to 256):
            Number of output channels used in the ASPP layer for semantic segmentation.
        atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`):
            Dilation (atrous) factors used in the ASPP layer for semantic segmentation.
        aspp_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the ASPP layer for semantic segmentation.
        semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
            The index that is ignored by the loss function of the semantic segmentation model.

    Example:

    ```python
    >>> from transformers import MobileViTConfig, MobileViTModel

    >>> # Initializing a mobilevit-small style configuration
    >>> configuration = MobileViTConfig()

    >>> # Initializing a model from the mobilevit-small style configuration
    >>> model = MobileViTModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```	mobilevitr         )         )       @   `         i     g       @g      @silur   g?g        g{Gz?gh㈵>T)            c                 `    t                      j        di | || _        || _        || _        || _        || _        || _        || _        || _	        |	| _
        |
| _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        d S )N )super__init__num_channels
image_size
patch_sizehidden_sizesneck_hidden_sizesnum_attention_heads	mlp_ratioexpand_ratio
hidden_actconv_kernel_sizeoutput_stridehidden_dropout_probattention_probs_dropout_probclassifier_dropout_probinitializer_rangelayer_norm_epsqkv_biasaspp_out_channelsatrous_ratesaspp_dropout_probsemantic_loss_ignore_index)selfr#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r7   kwargs	__class__s                          q/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/mobilevit/configuration_mobilevit.pyr"   zMobileViTConfig.__init__e   s    2 	""6"""($$(!2#6 "($ 0*#6 ,H)'>$!2,  "3(!2*D'''    )__name__
__module____qualname____doc__
model_typer"   __classcell__)r:   s   @r;   r   r      s        B BH J $__999%( # [[#&-1E 1E 1E 1E 1E 1E 1E 1E 1E 1Er<   r   c                       e Zd Z ej        d          Zedeeee	ef         f         fd            Z
edeeee	ef         f         fd            Zedefd            ZdS )MobileViTOnnxConfigz1.11returnc                 0    t          ddddddfg          S )Npixel_valuesbatchr#   heightwidth)r      r   r   r   r8   s    r;   inputszMobileViTOnnxConfig.inputs   s&    ^^PX]d-e-efghhhr<   c                 r    | j         dk    rt          dddifg          S t          dddifdddifg          S )Nzimage-classificationlogitsr   rH   last_hidden_statepooler_output)taskr   rL   s    r;   outputszMobileViTOnnxConfig.outputs   sS    9...Aw< 89:::!4q'l CoXY[bWcEdefffr<   c                     dS )Ng-C6?r    rL   s    r;   atol_for_validationz'MobileViTOnnxConfig.atol_for_validation   s    tr<   N)r=   r>   r?   r   parsetorch_onnx_minimum_versionpropertyr   strintrM   rS   floatrU   r    r<   r;   rD   rD      s        !.v!6!6iWS#X%6 67 i i i Xi ggc3h&7!78 g g g Xg U    X  r<   rD   N)r@   collectionsr   typingr   	packagingr   configuration_utilsr   onnxr	   utilsr
   
get_loggerr=   loggerr   rD   r    r<   r;   <module>rd      s    $ # # # # # # #             3 3 3 3 3 3             
	H	%	%xE xE xE xE xE& xE xE xEv    *     r<   