
    g                          d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
  e
j        e          Z G d d	e          Z G d
 de          ZdS )zMobileBERT model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingc                   V     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )MobileBertConfiga  
    This is the configuration class to store the configuration of a [`MobileBertModel`] or a [`TFMobileBertModel`]. It
    is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileBERT
    [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the MobileBERT model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`MobileBertModel`] or [`TFMobileBertModel`].
        hidden_size (`int`, *optional*, defaults to 512):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 4):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 512):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"relu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`MobileBertModel`] or
            [`TFMobileBertModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.

        pad_token_id (`int`, *optional*, defaults to 0):
            The ID of the token in the word embedding to use as padding.
        embedding_size (`int`, *optional*, defaults to 128):
            The dimension of the word embedding vectors.
        trigram_input (`bool`, *optional*, defaults to `True`):
            Use a convolution of trigram as input.
        use_bottleneck (`bool`, *optional*, defaults to `True`):
            Whether to use bottleneck in BERT.
        intra_bottleneck_size (`int`, *optional*, defaults to 128):
            Size of bottleneck layer output.
        use_bottleneck_attention (`bool`, *optional*, defaults to `False`):
            Whether to use attention inputs from the bottleneck transformation.
        key_query_shared_bottleneck (`bool`, *optional*, defaults to `True`):
            Whether to use the same linear transformation for query&key in the bottleneck.
        num_feedforward_networks (`int`, *optional*, defaults to 4):
            Number of FFNs in a block.
        normalization_type (`str`, *optional*, defaults to `"no_norm"`):
            The normalization type in MobileBERT.
        classifier_dropout (`float`, *optional*):
            The dropout ratio for the classification head.

    Examples:

    ```python
    >>> from transformers import MobileBertConfig, MobileBertModel

    >>> # Initializing a MobileBERT configuration
    >>> configuration = MobileBertConfig()

    >>> # Initializing a model (with random weights) from the configuration above
    >>> model = MobileBertModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    
mobilebert:w           relu        皙?   {Gz?-q=r      TFno_normNc                     t                      j        dd|i| || _        || _        || _        || _        || _        || _        || _        || _	        |	| _
        |
| _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        | j        r|| _        n|| _        || _        d S )Npad_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsembedding_sizetrigram_inputuse_bottleneckintra_bottleneck_sizeuse_bottleneck_attentionkey_query_shared_bottlenecknum_feedforward_networksnormalization_typeclassifier_activationtrue_hidden_sizeclassifier_dropout)selfr   r   r   r    r"   r!   r#   r$   r%   r&   r'   r(   r   r)   r*   r+   r,   r-   r.   r/   r0   r1   r3   kwargs	__class__s                            s/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/mobilebert/configuration_mobilebert.pyr   zMobileBertConfig.__init__l   s    6 	==l=f===$&!2#6 $!2#6 ,H)'>$.!2,,*,%:"(@%+F((@%"4%:" 	0$9D!!$/D!"4    )r   r   r   r   r   r   r   r   r   r   r   r   r   r   TTr   FTr   r   TN)__name__
__module____qualname____doc__
model_typer   __classcell__)r6   s   @r7   r
   r
      s        K KZ J %( #!!&$(!"$"185 85 85 85 85 85 85 85 85 85r8   r
   c                   J    e Zd Zedeeeeef         f         fd            ZdS )MobileBertOnnxConfigreturnc                 `    | j         dk    rdddd}nddd}t          d|fd|fd	|fg          S )
Nzmultiple-choicebatchchoicesequence)r      r   )r   rF   	input_idsattention_masktoken_type_ids)taskr   )r4   dynamic_axiss     r7   inputszMobileBertOnnxConfig.inputs   s]    9)))&8
CCLL&:66Ll+!<0!<0
 
 	
r8   N)r9   r:   r;   propertyr   strintrL   r   r8   r7   r@   r@      sL        
WS#X%6 67 
 
 
 X
 
 
r8   r@   N)r<   collectionsr   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerr9   loggerr
   r@   r   r8   r7   <module>rW      s    % $ # # # # # #       3 3 3 3 3 3             
	H	%	%H5 H5 H5 H5 H5' H5 H5 H5X
 
 
 
 
: 
 
 
 
 
r8   