# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING

from ...utils import (
    OptionalDependencyNotAvailable,
    _LazyModule,
    is_tf_available,
    is_tokenizers_available,
    is_torch_available,
)


_import_structure = {
    "configuration_mobilebert": [
        "MobileBertConfig",
        "MobileBertOnnxConfig",
    ],
    "tokenization_mobilebert": ["MobileBertTokenizer"],
}

try:
    if not is_tokenizers_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["tokenization_mobilebert_fast"] = ["MobileBertTokenizerFast"]

try:
    if not is_torch_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["modeling_mobilebert"] = [
        "MobileBertForMaskedLM",
        "MobileBertForMultipleChoice",
        "MobileBertForNextSentencePrediction",
        "MobileBertForPreTraining",
        "MobileBertForQuestionAnswering",
        "MobileBertForSequenceClassification",
        "MobileBertForTokenClassification",
        "MobileBertLayer",
        "MobileBertModel",
        "MobileBertPreTrainedModel",
        "load_tf_weights_in_mobilebert",
    ]

try:
    if not is_tf_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["modeling_tf_mobilebert"] = [
        "TFMobileBertForMaskedLM",
        "TFMobileBertForMultipleChoice",
        "TFMobileBertForNextSentencePrediction",
        "TFMobileBertForPreTraining",
        "TFMobileBertForQuestionAnswering",
        "TFMobileBertForSequenceClassification",
        "TFMobileBertForTokenClassification",
        "TFMobileBertMainLayer",
        "TFMobileBertModel",
        "TFMobileBertPreTrainedModel",
    ]


if TYPE_CHECKING:
    from .configuration_mobilebert import (
        MobileBertConfig,
        MobileBertOnnxConfig,
    )
    from .tokenization_mobilebert import MobileBertTokenizer

    try:
        if not is_tokenizers_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .tokenization_mobilebert_fast import MobileBertTokenizerFast

    try:
        if not is_torch_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .modeling_mobilebert import (
            MobileBertForMaskedLM,
            MobileBertForMultipleChoice,
            MobileBertForNextSentencePrediction,
            MobileBertForPreTraining,
            MobileBertForQuestionAnswering,
            MobileBertForSequenceClassification,
            MobileBertForTokenClassification,
            MobileBertLayer,
            MobileBertModel,
            MobileBertPreTrainedModel,
            load_tf_weights_in_mobilebert,
        )

    try:
        if not is_tf_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .modeling_tf_mobilebert import (
            TFMobileBertForMaskedLM,
            TFMobileBertForMultipleChoice,
            TFMobileBertForNextSentencePrediction,
            TFMobileBertForPreTraining,
            TFMobileBertForQuestionAnswering,
            TFMobileBertForSequenceClassification,
            TFMobileBertForTokenClassification,
            TFMobileBertMainLayer,
            TFMobileBertModel,
            TFMobileBertPreTrainedModel,
        )

else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
