
    gL                         d Z ddlZddlmZmZmZmZ ddlmZ ddl	m
Z
 ddlmZ  ej        e          Z G d d	e          Z G d
 de          Z G d de          ZdS )zMllama model configuration    N)DictListOptionalUnion   )PretrainedConfig)rope_config_validation)loggingc                        e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d&dededededededededededededee	e                  dee	e	e                           def fd Z
ed!efd"            Zed#eeej        f         d!d$fd%            Z xZS )'MllamaVisionConfiga*  
    This is the configuration class to store the configuration of a [`MllamaVisionModel`]. It is used to instantiate an
    Mllama vision model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Mllama-11B.

    e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 1280):
            Dimensionality of the encoder layers and the pooler layer.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_global_layers (`int`, *optional*, defaults to 8):
            Number of global layers in the Transformer encoder.
            Vision model has a second transformer encoder, called global.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input image.
        intermediate_size (`int`, *optional*, defaults to 5120):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        vision_output_dim (`int`, *optional*, defaults to 7680):
            Dimensionality of the vision model output. Includes output of transformer
            encoder with intermediate layers and global transformer encoder.
        image_size (`int`, *optional*, defaults to 448):
            The size (resolution) of each image *tile*.
        patch_size (`int`, *optional*, defaults to 14):
            The size (resolution) of each patch.
        norm_eps (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        max_num_tiles (`int`, *optional*, defaults to 4):
            Maximum number of tiles for image splitting.
        intermediate_layers_indices (`List[int]`, *optional*, defaults to [3, 7, 15, 23, 30]):
            Indices of intermediate layers of transformer encoder from which to extract and output features.
            These output features are concatenated with final hidden state of transformer encoder.
        supported_aspect_ratios (`List[List[int]]`, *optional*):
            List of supported aspect ratios for image splitting. If not specified, the default supported aspect ratios
            are [[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [3, 1], [4, 1]] for `max_num_tiles=4`.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

    Example:

    ```python
    >>> from transformers import MllamaVisionConfig, MllamaVisionModel

    >>> # Initializing a Llama config
    >>> config = MllamaVisionConfig()

    >>> # Initializing a vision model from the mllama-11b style configuration
    >>> model = MllamaVisionModel(config)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```mllama_vision_model   gelu          r              h㈵>   N{Gz?hidden_size
hidden_actnum_hidden_layersnum_global_layersnum_attention_headsnum_channelsintermediate_sizevision_output_dim
image_size
patch_sizenorm_epsmax_num_tilesintermediate_layers_indicessupported_aspect_ratiosinitializer_rangec           	      z   |/|dk    rt          d          ddgddgddgddgddgddgddgddgg}|g d}|| _        || _        || _        || _        || _        |	| _        || _        |
| _        || _	        || _
        || _        || _        || _        || _        || _         t!                      j        di | d S )Nr   z;max_num_tiles must be 4 for default supported aspect ratios      r   )r                )
ValueErrorr   r   r   r   r    r"   r!   r#   r&   r   r%   r$   attention_headsr'   r(   super__init__)selfr   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   kwargs	__class__s                    k/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/mllama/configuration_mllama.pyr4   zMllamaVisionConfig.__init__\   s   & #*!! !^___()1v1v1v1v1vPQSTvXY[\W]`acd_e&f#&.*<*<*<'&$!2(!2$!2$+F(!2* 2'>$!2""6"""""    returnc                 *    t          | j                  S )N)lenr'   )r5   s    r8   max_aspect_ratio_idz&MllamaVisionConfig.max_aspect_ratio_id   s    4/000r9   pretrained_model_name_or_pathr   c                 N   |                      |            | j        |fi |\  }}|                    d          dk    r|d         }d|v rMt          | d          r=|d         | j        k    r,t
                              d|d          d| j         d            | j        |fi |S )N
model_typemllamavision_configYou are using a model of type   to instantiate a model of type N. This is not supported for all configurations of models and can yield errors._set_token_in_kwargsget_config_dictgethasattrr@   loggerwarning	from_dictclsr>   r6   config_dicts       r8   from_pretrainedz"MllamaVisionConfig.from_pretrained   s      (((1c12OZZSYZZV??<((H44%o6K;&&73+E+E&+VbJcgjguJuJuNNr\1J r r>r r r  
 s}[33F333r9   )r   r   r   r   r   r   r   r   r   r   r   r   NNr   )__name__
__module____qualname____doc__r@   intstrfloatr   r   r4   propertyr=   classmethodr   osPathLikerQ   __classcell__r7   s   @r8   r   r      s       < <| 'J   !#!"#%!%!%;?=A#'!*# *#*# *# 	*#
 *# !*# *# *# *# *# *# *# *# &.d3i%8*# "*$tCy/!:*#  !!*# *# *# *# *# *#X 1S 1 1 1 X1 4E#r{BR<S 4bt 4 4 4 [4 4 4 4 4r9   r   c            (           e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d-dededededededededee	         deded ed!e
d"e
d#eee                  d$ed%ed&ed'ee         f& fd(Zed)eeej        f         d*d+fd,            Z xZS ).MllamaTextConfiga  
    This is the configuration class to store the configuration of a [`MllamaTextModel`]. It is used to instantiate an
    Mllama text model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Mllama-11B.

    e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 128256):
            Vocabulary size of the Mllama text model. Defines the maximum number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`MllamaTextModel`].
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimensionality of the embeddings and hidden states.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the encoder and pooler.
        num_hidden_layers (`int`, *optional*, defaults to 40):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If not
            specified, will default to `num_attention_heads`.
        intermediate_size (`int`, *optional*, defaults to 14336):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        rope_theta (`float`, *optional*, defaults to 500000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        max_position_embeddings (`int`, *optional*, defaults to 131072):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        cross_attention_layers (`List[int]`, *optional*):
            Indices of the cross attention layers. If not specified, will default to [3, 8, 13, 18, 23, 28, 33, 38].
        dropout (`float`, *optional*, defaults to 0):
            The dropout probability for self- and cross-attention layers.
        bos_token_id (`int`, *optional*, defaults to 128000):
            The id of the beginning of sentence token.
        eos_token_id (`int`, *optional*, defaults to 128001):
            The id of the end of sentence token.
        pad_token_id (`int`, *optional*, defaults to 128004):
            The id of the padding token.

    Example:

    ```python
    >>> from transformers import MllamaTextModel, MllamaTextConfig

    >>> # Initializing a Mllama text config
    >>> config = MllamaTextConfig()

    >>> # Initializing a model from the Mllama text configuration
    >>> model = MllamaTextModel(config)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```mllama_text_model     silu(   r   r    8    Nr      r   TFr       
vocab_sizer   r   r   r   num_key_value_headsr    
rope_thetarope_scalingrms_norm_epsmax_position_embeddingsr(   	use_cachetie_word_embeddingscross_attention_layersdropoutbos_token_ideos_token_idpad_token_idc                 @   |g d}|| _         || _        || _        || _        || _        || _        || _        || _        || _        |
| _	        || _
        || _        || _        |	| _        || _        t          |             t!                      j        d||||d| d S )N)r   r         r.      !   &   )rx   rv   rw   rs   r0   )rl   r   rt   r   r   rm   r(   rr   rn   rp   r    ru   r   ro   rq   r	   r3   r4   )r5   rl   r   r   r   r   rm   r    rn   ro   rp   rq   r(   rr   rs   rt   ru   rv   rw   rx   r6   r7   s                        r8   r4   zMllamaTextConfig.__init__  s    . ")%C%C%C"$!2&<#&#6 #6 !2"$(!2$('>$t$$$ 	
%%% 3		
 	

 	
 	
 	
 	
 	
r9   r>   r:   r   c                 N   |                      |            | j        |fi |\  }}|                    d          dk    r|d         }d|v rMt          | d          r=|d         | j        k    r,t
                              d|d          d| j         d            | j        |fi |S )Nr@   rA   text_configrC   rD   rE   rF   rN   s       r8   rQ   z MllamaTextConfig.from_pretrained:  s      (((1c12OZZSYZZV??<((H44%m4K;&&73+E+E&+VbJcgjguJuJuNNr\1J r r>r r r  
 s}[33F333r9   )rb   rc   rd   re   r   r   rf   rg   Nr   rh   r   TFNr   ri   rj   rk   )rR   rS   rT   rU   r@   rV   rW   rX   r   r   boolr   r4   rZ   r   r[   r\   rQ   r]   r^   s   @r8   r`   r`      s       d dL %J ! !##%#$!'#'+"'.#'$)6:""&,)1
 1
1
 1
 	1

 1
 !1
 !1
 1
 1
 tn1
 1
 "%1
 !1
 1
 "1
  !)c 3!1
" #1
$ %1
& '1
( sm)1
 1
 1
 1
 1
 1
f 4E#r{BR<S 4bt 4 4 4 [4 4 4 4 4r9   r`   c                   2     e Zd ZdZdZdZ	 	 	 d fd	Z xZS )MllamaConfiga  
    This is the configuration class to store the configuration of a [`MllamaForConditionalGeneration`]. It is used to instantiate an
    Mllama model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Mllama-9B.

    e.g. [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaVisionConfig`):
            The config object or dictionary of the vision backbone.
        text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `MllamaTextConfig`):
            The config object or dictionary of the text backbone.
        image_token_index (`int`, *optional*, defaults to 128256):
            The image token index to encode the image prompt.

    Example:

    ```python
    >>> from transformers import MllamaForConditionalGeneration, MllamaConfig, MllamaVisionConfig, MllamaTextConfig

    >>> # Initializing a CLIP-vision config
    >>> vision_config = MllamaVisionConfig()

    >>> # Initializing a Llama config
    >>> text_config = MllamaTextConfig()

    >>> # Initializing a mllama-11b style configuration
    >>> configuration = MllamaConfig(vision_config, text_config)

    >>> # Initializing a model from the mllama-11b style configuration
    >>> model = MllamaForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```rA   TNrb   c                    |.t                      | _        t                              d           nCt	          |t
                    rt          di || _        nt	          |t                     r|| _        || _        |.t                      | _        t                              d           nCt	          |t
                    rt          di || _        nt	          |t                    r|| _         t                      j
        di | d S )Nz9vision_config is None, using default mllama vision configz5text_config is None, using default mllama text configr0   )r   rB   rK   info
isinstancedictimage_token_indexr`   r   r3   r4   )r5   rB   r   r   r6   r7   s        r8   r4   zMllamaConfig.__init__w  s     !3!5!5DKKSTTTTt,, 	/!3!D!Dm!D!DD'9:: 	/!.D!2/11DKKOPPPPT** 	+/>>+>>D%566 	+*D""6"""""r9   )NNrb   )rR   rS   rT   rU   r@   is_compositionr4   r]   r^   s   @r8   r   r   L  s_        % %N JN  	# # # # # # # # # #r9   r   )rU   r[   typingr   r   r   r   configuration_utilsr   modeling_rope_utilsr	   utilsr
   
get_loggerrR   rK   r   r`   r   r0   r9   r8   <module>r      s+   !   				 . . . . . . . . . . . . 3 3 3 3 3 3 9 9 9 9 9 9       
	H	%	%@4 @4 @4 @4 @4) @4 @4 @4Fk4 k4 k4 k4 k4' k4 k4 k4\D# D# D# D# D## D# D# D# D# D#r9   