
    g                     ^    d Z ddlmZ ddlmZ  ej        e          Z G d de          ZdS )zMarkupLM model configuration   )PretrainedConfig)loggingc                   X     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )MarkupLMConfiga  
    This is the configuration class to store the configuration of a [`MarkupLMModel`]. It is used to instantiate a
    MarkupLM model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the MarkupLM
    [microsoft/markuplm-base](https://huggingface.co/microsoft/markuplm-base) architecture.

    Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the
    documentation from [`BertConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the MarkupLM model. Defines the different tokens that can be represented by the
            *inputs_ids* passed to the forward method of [`MarkupLMModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed into [`MarkupLMModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        max_tree_id_unit_embeddings (`int`, *optional*, defaults to 1024):
            The maximum value that the tree id unit embedding might ever use. Typically set this to something large
            just in case (e.g., 1024).
        max_xpath_tag_unit_embeddings (`int`, *optional*, defaults to 256):
            The maximum value that the xpath tag unit embedding might ever use. Typically set this to something large
            just in case (e.g., 256).
        max_xpath_subs_unit_embeddings (`int`, *optional*, defaults to 1024):
            The maximum value that the xpath subscript unit embedding might ever use. Typically set this to something
            large just in case (e.g., 1024).
        tag_pad_id (`int`, *optional*, defaults to 216):
            The id of the padding token in the xpath tags.
        subs_pad_id (`int`, *optional*, defaults to 1001):
            The id of the padding token in the xpath subscripts.
        xpath_tag_unit_hidden_size (`int`, *optional*, defaults to 32):
            The hidden size of each tree id unit. One complete tree index will have
            (50*xpath_tag_unit_hidden_size)-dim.
        max_depth (`int`, *optional*, defaults to 50):
            The maximum depth in xpath.

    Examples:

    ```python
    >>> from transformers import MarkupLMModel, MarkupLMConfig

    >>> # Initializing a MarkupLM microsoft/markuplm-base style configuration
    >>> configuration = MarkupLMConfig()

    >>> # Initializing a model from the microsoft/markuplm-base style configuration
    >>> model = MarkupLMModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```markuplm:w           gelu皙?      {Gz?-q=                   2   absoluteTNc                 h    t                      j        d|||d| || _        || _        || _        || _        || _        || _        || _        || _	        |	| _
        |
| _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        d S )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsposition_embedding_type	use_cacheclassifier_dropout	max_depthmax_xpath_tag_unit_embeddingsmax_xpath_subs_unit_embeddings
tag_pad_idsubs_pad_idxpath_unit_hidden_size)selfr!   r"   r#   r$   r&   r%   r'   r(   r)   r*   r+   r,   r   r   r   r1   r2   r3   r4   r5   r0   r-   r.   r/   kwargs	__class__s                             o/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/markuplm/configuration_markuplm.pyr    zMarkupLMConfig.__init__b   s    8 	 	
%%%	
 	
 		
 	
 	
 %&!2#6 $!2#6 ,H)'>$.!2,'>$""4"-J*.L+$&&<###    )r   r	   r
   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   TN)__name__
__module____qualname____doc__
model_typer    __classcell__)r8   s   @r9   r   r      s        E EN J %( #&)'+! *37= 7= 7= 7= 7= 7= 7= 7= 7= 7=r:   r   N)	r>   configuration_utilsr   utilsr   
get_loggerr;   loggerr   r   r:   r9   <module>rE      s    # " 3 3 3 3 3 3       
	H	%	%A= A= A= A= A=% A= A= A= A= A=r:   