
    g                     f    d Z ddlZddlmZ ddlmZ  ej        e          Z G d de          Z	dS )zMAMBA2 configuration    N   )PretrainedConfig)loggingc                   v     e Zd ZdZdZddddddddd	d
d
dddddddddddd ed          fdddddf fd	Z xZS )Mamba2Configal  
    This is the configuration class to store the configuration of a [`Mamba2Model`]. It is used to instantiate a MAMBA2
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the MAMBA2
    [state-spaces/mamba2-2.8b](https://huggingface.co/state-spaces/mamba2-2.8b) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        num_heads (`int`, *optional*, defaults to 128):
            Number of heads for the evolution matrices of mamba 2.
        head_dim (`int`, *optional*, defaults to 64):
            Dimension of each head.
        vocab_size (`int`, *optional*, defaults to 32768):
            Vocabulary size of the MAMBA2 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`Mamba2Model`].
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimensionality of the embeddings and hidden states.
        state_size (`int`, *optional*, defaults to 128): shape of the state space latents.
        num_hidden_layers (`int`, *optional*, defaults to 64):
            Number of hidden layers in the model.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
            The epsilon to use in the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 1):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 0):
            The id of the beginning of sentence token in the vocabulary.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the end of sentence token in the vocabulary.
        expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
        conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
        n_groups (`int`, *optional*, defaults to 8):
            Number of groups for the evolution matrices of mamba 2.
        use_bias (`bool`, *optional*, defaults to `False`):
            Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
        use_conv_bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use bias in the convolution layer of the mixer block.
        hidden_act (`str`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        initializer_range (`float`, *optional*, defaults to 0.1):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        residual_in_fp32 (`bool`, *optional*, defaults to `True`):
            Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model
        time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
            Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
        time_step_min (`float`, *optional*, defaults to 0.001):
            Minimum `time_step` used to bound `dt_proj.bias`.
        time_step_max (`float`, *optional*, defaults to 0.1):
            Maximum `time_step` used to bound `dt_proj.bias`.
        time_step_floor (`float`, *optional*, defaults to 0.0001):
            Minimum clamping value of the `dt_proj.bias` layer initialization.
        time_step_limit (`tuple`, *optional*, defaults to `(0.0, inf)`):
            Accepted range of time step values.
        rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
            Whether or not to rescale `out_proj` weights when initializing.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the cache should be used.
        rms_norm (`bool`, *optional*, defaults to `True`):
            Whether to use RMS norm or not.
        chunk_size (`int`, *optional*, defaults to 256):
            Size of the chunks that will comprise the sequence.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie word embeddings or not.


    Example:

    ```python
    >>> from transformers import Mamba2Config, Mamba2Model

    >>> # Initializing a Mamba2 configuration
    >>> configuration = Mamba2Config()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = Mamba2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```mamba2   @   i   i   gh㈵>   r            FTsilug?autogMbP?g-C6?g        inf   c                    || _         || _        || _        || _        || _        || _        || _        |	| _        |
| _        || _	        || _
        || _        || _        || _        |dk    rt          j        | j        dz            n|| _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _         t=                      j        d|	|
||d| d S )Nr      )bos_token_ideos_token_idpad_token_idtie_word_embeddings ) 
vocab_sizehidden_size
state_sizenum_hidden_layerslayer_norm_epsilonconv_kernelexpandr   r   r   use_biasuse_conv_bias
hidden_actinitializer_rangemathceiltime_step_ranktime_step_mintime_step_maxtime_step_floorrescale_prenorm_residualresidual_in_fp32	use_cachen_groups	num_headshead_dimrms_norm
chunk_sizetime_step_limitr   super__init__)selfr/   r0   r   r   r   r   r   r   r   r   r    r   r.   r!   r"   r#   r$   r,   r'   r(   r)   r*   r3   r+   r-   r1   r2   r   kwargs	__class__s                                 k/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/mamba2/configuration_mamba2.pyr5   zMamba2Config.__init__o   sJ   @ %&$!2"4&((( *$!2BPTZBZBZdi(82(=>>>`n**.(@% 0" "  $$.#6  	
%%% 3		
 	

 	
 	
 	
 	
 	
    )__name__
__module____qualname____doc__
model_typefloatr5   __classcell__)r8   s   @r9   r   r      s        P Pd J eeEll+!&!;E
 E
 E
 E
 E
 E
 E
 E
 E
 E
r:   r   )
r>   r%   configuration_utilsr   utilsr   
get_loggerr;   loggerr   r   r:   r9   <module>rF      s       3 3 3 3 3 3       
	H	%	%Z
 Z
 Z
 Z
 Z
# Z
 Z
 Z
 Z
 Z
r:   