
    g                     f    d Z ddlZddlmZ ddlmZ  ej        e          Z G d de          Z	dS )zMAMBA configuration    N   )PretrainedConfig)loggingc                   X     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )MambaConfiga  
    This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the MAMBA
    [state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50280):
            Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`MambaModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the embeddings and hidden states.
        state_size (`int`, *optional*, defaults to 16): shape of the state space latents.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the model.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
            The epsilon to use in the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 0):
            The id of the beginning of sentence token in the vocabulary.
        eos_token_id (`int`, *optional*, defaults to 0):
            The id of the end of sentence token in the vocabulary.
        expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
        conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
        use_bias (`bool`, *optional*, defaults to `False`):
            Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
        use_conv_bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use bias in the convolution layer of the mixer block.
        hidden_act (`str`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        initializer_range (`float`, *optional*, defaults to 0.1):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        residual_in_fp32 (`bool`, *optional*, defaults to `True`):
            Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model
        time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
            Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
        time_step_scale (`float`, *optional*, defaults to 1.0):
            Scale used used to scale `dt_proj.bias`.
        time_step_min (`float`, *optional*, defaults to 0.001):
            Minimum `time_step` used to bound `dt_proj.bias`.
        time_step_max (`float`, *optional*, defaults to 0.1):
            Maximum `time_step` used to bound `dt_proj.bias`.
        time_step_init_scheme (`float`, *optional*, defaults to `"random"`):
            Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]`
        time_step_floor (`float`, *optional*, defaults to 0.0001):
            Minimum clamping value of the `dt_proj.bias` layer initialization.
        rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
            Whether or not to rescale `out_proj` weights when initializing.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the cache should be used.
        use_mambapy (`bool`, *optional*, defaults to `False`):
            Determines the fallback strategy during training if the CUDA-based official implementation of Mamba is not avaiable. If `True`, the mamba.py implementation is used. If `False`, the naive and slower implementation is used. Consider switching to the naive version if memory is limited.


    Example:

    ```python
    >>> from transformers import MambaConfig, MambaModel

    >>> # Initializing a Mamba configuration
    >>> configuration = MambaConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = MambaModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```mambah            h㈵>r         FTsilu皙?auto      ?MbP?random-C6?c                    || _         || _        || _        || _        || _        |
| _        |	| _        t          |	| j        z            | _        || _	        || _
        || _        || _        || _        || _        || _        |dk    rt!          j        | j        dz            n|| _        || _        || _        || _        || _        || _        || _        || _        || _        || _         t9                      j        d|||d| d S )Nr   r   )bos_token_ideos_token_idpad_token_id )
vocab_sizehidden_size
state_sizenum_hidden_layerslayer_norm_epsilonconv_kernelexpandintintermediate_sizer   r   r   use_biasuse_conv_bias
hidden_actinitializer_rangemathceiltime_step_ranktime_step_scaletime_step_mintime_step_maxtime_step_init_schemetime_step_floorrescale_prenorm_residualresidual_in_fp32	use_cacheuse_mambapysuper__init__)selfr   r   r   r   r    r   r   r   r"   r!   r%   r&   r'   r(   r2   r+   r,   r-   r.   r/   r0   r1   r3   r4   kwargs	__class__s                             i/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/mamba/configuration_mamba.pyr6   zMambaConfig.__init__g   s(   8 %&$!2"4&!$Vd.>%>!?!?((( *$!2BPTZBZBZdi(82(=>>>`n.**%:".(@% 0"&sl\hsslrsssss    )r	   r
   r   r   r   r   r   r   r   r   FTr   r   Tr   r   r   r   r   r   FTF)__name__
__module____qualname____doc__
model_typer6   __classcell__)r9   s   @r:   r   r      s        H HT J &!&36t 6t 6t 6t 6t 6t 6t 6t 6t 6tr;   r   )
r?   r)   configuration_utilsr   utilsr   
get_loggerr<   loggerr   r   r;   r:   <module>rF      s       3 3 3 3 3 3       
	H	%	%Ct Ct Ct Ct Ct" Ct Ct Ct Ct Ctr;   