
    g                     ^    d Z ddlmZ ddlmZ  ej        e          Z G d de          ZdS )zLUKE configuration   )PretrainedConfig)loggingc                   N     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )
LukeConfiga(  
    This is the configuration class to store the configuration of a [`LukeModel`]. It is used to instantiate a LUKE
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the LUKE
    [studio-ousia/luke-base](https://huggingface.co/studio-ousia/luke-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50267):
            Vocabulary size of the LUKE model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`LukeModel`].
        entity_vocab_size (`int`, *optional*, defaults to 500000):
            Entity vocabulary size of the LUKE model. Defines the number of different entities that can be represented
            by the `entity_ids` passed when calling [`LukeModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        entity_emb_size (`int`, *optional*, defaults to 256):
            The number of dimensions of the entity embedding.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`LukeModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        use_entity_aware_attention (`bool`, *optional*, defaults to `True`):
            Whether or not the model should use the entity-aware self-attention mechanism proposed in [LUKE: Deep
            Contextualized Entity Representations with Entity-aware Self-attention (Yamada et
            al.)](https://arxiv.org/abs/2010.01057).
        classifier_dropout (`float`, *optional*):
            The dropout ratio for the classification head.
        pad_token_id (`int`, *optional*, defaults to 1):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 0):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            End of stream token id.

    Examples:

    ```python
    >>> from transformers import LukeConfig, LukeModel

    >>> # Initializing a LUKE configuration
    >>> configuration = LukeConfig()

    >>> # Initializing a model from the configuration
    >>> model = LukeModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```luke[                gelu皙?      {Gz?-q=TN       c                 "    t                      j        d|||d| || _        || _        || _        || _        || _        || _        || _        || _	        |	| _
        |
| _        || _        || _        || _        || _        || _        || _        dS )zConstructs LukeConfig.)pad_token_idbos_token_ideos_token_idN )super__init__
vocab_sizeentity_vocab_sizehidden_sizeentity_emb_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsuse_entity_aware_attentionclassifier_dropout)selfr   r   r   r    r!   r"   r$   r#   r%   r&   r'   r(   r)   r*   r+   r,   r   r   r   kwargs	__class__s                        g/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/luke/configuration_luke.pyr   zLukeConfig.__init__b   s    0 	sl\hsslrsss$!2&.!2#6 $!2#6 ,H)'>$.!2,*D'"4    )r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   TNr   r   r   )__name__
__module____qualname____doc__
model_typer   __classcell__)r/   s   @r0   r   r      s        E EN J  %( ##'))5 )5 )5 )5 )5 )5 )5 )5 )5 )5r1   r   N)	r5   configuration_utilsr   utilsr   
get_loggerr2   loggerr   r   r1   r0   <module>r<      s      3 3 3 3 3 3       
	H	%	%s5 s5 s5 s5 s5! s5 s5 s5 s5 s5r1   