
    g*                     ~    d Z ddlmZ ddlmZmZ  ej        e          Z e            rddl	Z	 G d de          Z
dS )zLayoutLMv2 model configuration   )PretrainedConfig)is_detectron2_availablelogging    Nc                   ~     e Zd ZdZdZddddddddd	d
ddddddddddg dddddddf fd	Zed             Zd Z xZ	S )LayoutLMv2Configa^  
    This is the configuration class to store the configuration of a [`LayoutLMv2Model`]. It is used to instantiate an
    LayoutLMv2 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the LayoutLMv2
    [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the LayoutLMv2 model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`LayoutLMv2Model`] or [`TFLayoutLMv2Model`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`LayoutLMv2Model`] or
            [`TFLayoutLMv2Model`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
            The maximum value that the 2D position embedding might ever be used with. Typically set this to something
            large just in case (e.g., 1024).
        max_rel_pos (`int`, *optional*, defaults to 128):
            The maximum number of relative positions to be used in the self-attention mechanism.
        rel_pos_bins (`int`, *optional*, defaults to 32):
            The number of relative position bins to be used in the self-attention mechanism.
        fast_qkv (`bool`, *optional*, defaults to `True`):
            Whether or not to use a single matrix for the queries, keys, values in the self-attention layers.
        max_rel_2d_pos (`int`, *optional*, defaults to 256):
            The maximum number of relative 2D positions in the self-attention mechanism.
        rel_2d_pos_bins (`int`, *optional*, defaults to 64):
            The number of 2D relative position bins in the self-attention mechanism.
        image_feature_pool_shape (`List[int]`, *optional*, defaults to [7, 7, 256]):
            The shape of the average-pooled feature map.
        coordinate_size (`int`, *optional*, defaults to 128):
            Dimension of the coordinate embeddings.
        shape_size (`int`, *optional*, defaults to 128):
            Dimension of the width and height embeddings.
        has_relative_attention_bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use a relative attention bias in the self-attention mechanism.
        has_spatial_attention_bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use a spatial attention bias in the self-attention mechanism.
        has_visual_segment_embedding (`bool`, *optional*, defaults to `False`):
            Whether or not to add visual segment embeddings.
        detectron2_config_args (`dict`, *optional*):
            Dictionary containing the configuration arguments of the Detectron2 visual backbone. Refer to [this
            file](https://github.com/microsoft/unilm/blob/master/layoutlmft/layoutlmft/models/layoutlmv2/detectron2_config.py)
            for details regarding default values.

    Example:

    ```python
    >>> from transformers import LayoutLMv2Config, LayoutLMv2Model

    >>> # Initializing a LayoutLMv2 microsoft/layoutlmv2-base-uncased style configuration
    >>> configuration = LayoutLMv2Config()

    >>> # Initializing a model (with random weights) from the microsoft/layoutlmv2-base-uncased style configuration
    >>> model = LayoutLMv2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
layoutlmv2i:w  i      i   gelug?      g{Gz?g-q=r   i          T   @   )   r   r   FNc                 F    t                      j        d|||||||||	|
|||d| || _        || _        || _        || _        || _        || _        || _        || _	        || _
        || _        || _        || _        || _        ||n|                                 | _        d S )N)
vocab_sizehidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epspad_token_id )super__init__max_2d_position_embeddingsmax_rel_posrel_pos_binsfast_qkvmax_rel_2d_posrel_2d_pos_binsconvert_sync_batchnormimage_feature_pool_shapecoordinate_size
shape_sizehas_relative_attention_biashas_spatial_attention_biashas_visual_segment_embeddingget_default_detectron2_configdetectron2_config_args)selfr   r   r   r   r   r   r   r   r   r   r   r   r    r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r2   kwargs	__class__s                                s/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/layoutlmv2/configuration_layoutlmv2.pyr#   zLayoutLMv2Config.__init__s   s    > 	 	
!#/ 3/! 3)E$;+/)%	
 	
 	
 	
 	
  +E'&( ,.&<#(@%.$+F(*D',H)&<&H""dNpNpNrNr 	###    c                     i dddg ddddg dd	d
gdgdgdgdggdg ddddddddddddddg ddddd d!d"d#d$d%d&d'd
gdgdgdgdggg d(gg dd
d)d*d+	S ),NzMODEL.MASK_ONTzMODEL.PIXEL_STD)g     L@g(\L@g(\2M@zMODEL.BACKBONE.NAMEbuild_resnet_fpn_backbonezMODEL.FPN.IN_FEATURES)res2res3res4res5zMODEL.ANCHOR_GENERATOR.SIZESr   r   r   r   r   zMODEL.RPN.IN_FEATURES)p2p3p4p5p6zMODEL.RPN.PRE_NMS_TOPK_TRAINi  zMODEL.RPN.PRE_NMS_TOPK_TESTi  zMODEL.RPN.POST_NMS_TOPK_TRAINzMODEL.POST_NMS_TOPK_TESTzMODEL.ROI_HEADS.NAMEStandardROIHeadszMODEL.ROI_HEADS.NUM_CLASSES   zMODEL.ROI_HEADS.IN_FEATURES)r>   r?   r@   rA   zMODEL.ROI_BOX_HEAD.NAMEFastRCNNConvFCHeadzMODEL.ROI_BOX_HEAD.NUM_FCr   z$MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION   zMODEL.ROI_MASK_HEAD.NAMEMaskRCNNConvUpsampleHead   r   e   )g      ?g      ?g       @   F)	zMODEL.ROI_MASK_HEAD.NUM_CONVz%MODEL.ROI_MASK_HEAD.POOLER_RESOLUTIONzMODEL.RESNETS.DEPTHzMODEL.RESNETS.SIZESzMODEL.RESNETS.ASPECT_RATIOSzMODEL.RESNETS.OUT_FEATURESzMODEL.RESNETS.NUM_GROUPSzMODEL.RESNETS.WIDTH_PER_GROUPzMODEL.RESNETS.STRIDE_IN_1X1r!   )clss    r6   r1   z.LayoutLMv2Config.get_default_detectron2_config   sW   
T
777
 "#>
 $%E%E%E	

 +bTB4#u,M
 $%C%C%C
 +D
 *4
 ,T
 '
 #$6
 *1
 *+C+C+C
 &';
 (
  3B!
" '(B#
$ -.56#&%'D2$use#D,;OO+<*J*J*J(*-.+05
 
 
 	
r7   c                    t           j                                        }| j                                        D ]P\  }}|                    d          }|}|d d         D ]}t          ||          }t          ||d         |           Q|S )N.)
detectron2configget_cfgr2   itemssplitgetattrsetattr)r3   detectron2_configkv
attributesto_set	attributes          r6   get_detectron2_configz&LayoutLMv2Config.get_detectron2_config   s    &-5577/5577 	/ 	/DAqJ&F'_ 4 4	 33FJrNA....  r7   )
__name__
__module____qualname____doc__
model_typer#   classmethodr1   r\   __classcell__)r5   s   @r6   r   r      s        Q Qf J %( ##'#!,$(#'%*#9>
 >
 >
 >
 >
 >
@ 
 
 [
<	! 	! 	! 	! 	! 	! 	!r7   r   )r`   configuration_utilsr   utilsr   r   
get_loggerr]   loggerrO   r   r!   r7   r6   <module>rh      s    % $ 3 3 3 3 3 3 5 5 5 5 5 5 5 5 
	H	%	%  ~! ~! ~! ~! ~!' ~! ~! ~! ~! ~!r7   