
    gHH                         d dl Z d dlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
  ej        e          Z G d	 d
e          Z G d de          Z G d de          ZdS )    N)Union   )PretrainedConfig)!MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)logging   )CONFIG_MAPPINGc                   x     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 d fd	Zedeee	j
        f         ddfd            Z xZS )InstructBlipVideoVisionConfiga  
    This is the configuration class to store the configuration of a [`InstructBlipVideoVisionModel`]. It is used to
    instantiate a InstructBlipVideo vision encoder according to the specified arguments, defining the model architecture.
    Instantiating a configuration defaults will yield a similar configuration to that of the InstructBlipVideo
    [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 1408):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 6144):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 39):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 14):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"gelu"` are supported. to 1e-5): The epsilon used by the layer
            normalization layers.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 1e-10):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries and values in the self-attention layers.

    Example:

    ```python
    >>> from transformers import InstructBlipVideoVisionConfig, InstructBlipVideoVisionModel

    >>> # Initializing a InstructBlipVideoVisionConfig with Salesforce/instruct-blip-flan-t5 style configuration
    >>> configuration = InstructBlipVideoVisionConfig()

    >>> # Initializing a InstructBlipVideoVisionModel (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration
    >>> model = InstructBlipVideoVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```instructblipvideo_vision_model     '            geluư>        绽|=Tc                      t                      j        di | || _        || _        || _        || _        || _        || _        |
| _        |	| _	        || _
        || _        || _        d S )N )super__init__hidden_sizeintermediate_sizenum_hidden_layersnum_attention_heads
patch_size
image_sizeinitializer_rangeattention_dropoutlayer_norm_eps
hidden_actqkv_bias)selfr   r   r   r   r    r   r$   r#   r"   r!   r%   kwargs	__class__s                /var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/instructblipvideo/configuration_instructblipvideo.pyr   z&InstructBlipVideoVisionConfig.__init__W   sz     	""6"""&!2!2#6 $$!2!2,$     pretrained_model_name_or_pathreturnr   c                 N   |                      |            | j        |fi |\  }}|                    d          dk    r|d         }d|v rMt          | d          r=|d         | j        k    r,t
                              d|d          d| j         d            | j        |fi |S )N
model_typeinstructblipvideovision_configYou are using a model of type   to instantiate a model of type N. This is not supported for all configurations of models and can yield errors._set_token_in_kwargsget_config_dictgethasattrr.   loggerwarning	from_dictclsr+   r'   config_dicts       r)   from_pretrainedz-InstructBlipVideoVisionConfig.from_pretrainedt   s      (((1c12OZZSYZZV ??<((,???%o6K;&&73+E+E&+VbJcgjguJuJuNNr\1J r r>r r r  
 s}[33F333r*   )r   r   r   r   r   r   r   r   r   r   T__name__
__module____qualname____doc__r.   r   classmethodr   strosPathLiker?   __classcell__r(   s   @r)   r   r   "   s        0 0d 2J ! ! ! ! ! !: 4E#r{BR<S 4bt 4 4 4 [4 4 4 4 4r*   r   c                        e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Zedeee	j
        f         ddfd            Z xZS )InstructBlipVideoQFormerConfiga  
    This is the configuration class to store the configuration of a [`InstructBlipVideoQFormerModel`]. It is used to
    instantiate a InstructBlipVideo Querying Transformer (Q-Former) model according to the specified arguments, defining the
    model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
    the InstructBlipVideo [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5)
    architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs.
    Read the documentation from [`PretrainedConfig`] for more information.

    Note that [`InstructBlipVideoQFormerModel`] is very similar to [`BertLMHeadModel`] with interleaved cross-attention.

    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the Q-Former model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling the model.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 0):
            Token id used for padding sequences.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        cross_attention_frequency (`int`, *optional*, defaults to 2):
            The frequency of adding cross-attention to the Transformer layers.
        encoder_hidden_size (`int`, *optional*, defaults to 1408):
            The hidden size of the hidden states for cross-attention.

    Examples:

    ```python
    >>> from transformers import InstructBlipVideoQFormerConfig, InstructBlipVideoQFormerModel

    >>> # Initializing a InstructBlipVideo Salesforce/instruct-blip-flan-t5 style configuration
    >>> configuration = InstructBlipVideoQFormerConfig()

    >>> # Initializing a model (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration
    >>> model = InstructBlipVideoQFormerModel(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```instructblipvideo_qformer:w           r   皙?   {Gz?-q=r   absoluter   r   c                     t                      j        dd|i| || _        || _        || _        || _        || _        || _        || _        || _	        |	| _
        |
| _        || _        || _        || _        || _        d S )Npad_token_idr   )r   r   
vocab_sizer   r   r   r$   r   hidden_dropout_probattention_probs_dropout_probmax_position_embeddingsr!   r#   position_embedding_typecross_attention_frequencyencoder_hidden_size)r&   rY   r   r   r   r   r$   rZ   r[   r\   r!   r#   rX   r]   r^   r_   r'   r(   s                    r)   r   z'InstructBlipVideoQFormerConfig.__init__   s    & 	==l=f===$&!2#6 $!2#6 ,H)'>$!2,'>$)B&#6   r*   r+   r,   r   c                 N   |                      |            | j        |fi |\  }}|                    d          dk    r|d         }d|v rMt          | d          r=|d         | j        k    r,t
                              d|d          d| j         d            | j        |fi |S )Nr.   r/   qformer_configr1   r2   r3   r4   r<   s       r)   r?   z.InstructBlipVideoQFormerConfig.from_pretrained   s      (((1c12OZZSYZZV ??<((,???%&67K;&&73+E+E&+VbJcgjguJuJuNNr\1J r r>r r r  
 s}[33F333r*   )rN   rO   rP   rP   rQ   r   rR   rR   rS   rT   rU   r   rV   r   r   r@   rJ   s   @r)   rL   rL      s        = =~ -J %( # *"# !"7 "7 "7 "7 "7 "7H 4E#r{BR<S 4bt 4 4 4 [4 4 4 4 4r*   rL   c                   V     e Zd ZdZdZ	 	 	 	 	 d
 fd	Zededede	fd	            Z
 xZS )InstructBlipVideoConfiga
  
    [`InstructBlipVideoConfig`] is the configuration class to store the configuration of a
    [`InstructBlipVideoForConditionalGeneration`]. It is used to instantiate a Instructblipvideo model according to the specified
    arguments, defining the vision model, Q-Former model and language model configs. Instantiating a configuration with
    the defaults will yield a similar configuration to that of the Instructblipvideo
    [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`InstructBlipVideoVisionConfig`].
        qformer_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`InstructBlipVideoQFormerConfig`].
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize any [`PretrainedConfig`].
        num_query_tokens (`int`, *optional*, defaults to 32):
            The number of query tokens passed through the Transformer.

        video_token_index (`int`, *optional*):
            Token index of special video token.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import (
    ...     InstructBlipVideoVisionConfig,
    ...     InstructBlipVideoQFormerConfig,
    ...     OPTConfig,
    ...     InstructBlipVideoConfig,
    ...     InstructBlipVideoForConditionalGeneration,
    ... )

    >>> # Initializing a InstructBlipVideoConfig with Salesforce/instruct-blip-flan-t5 style configuration
    >>> configuration = InstructBlipVideoConfig()

    >>> # Initializing a InstructBlipVideoForConditionalGeneration (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration
    >>> model = InstructBlipVideoForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a InstructBlipVideoConfig from a InstructBlipVideoVisionConfig, InstructBlipVideoQFormerConfig and any PretrainedConfig

    >>> # Initializing Instructblipvideo vision, Instructblipvideo Q-Former and language model configurations
    >>> vision_config = InstructBlipVideoVisionConfig()
    >>> qformer_config = InstructBlipVideoQFormerConfig()
    >>> text_config = OPTConfig()

    >>> config = InstructBlipVideoConfig.from_text_vision_configs(vision_config, qformer_config, text_config)
    ```r/   N    c                 T    t                      j        di | |i }t                              d           |i }t                              d           |i }t                              d           t	          di || _        t          di || _        d|v r|d         nd}t          |         di || _	        | j	        j
        | _
        | j	        j        | _        || _        || _        | j        j        | j        _        | j	        j        t"          v | _        d| _        d| _        d S )	NzZvision_config is None. initializing the InstructBlipVideoVisionConfig with default values.z\qformer_config is None. Initializing the InstructBlipVideoQFormerConfig with default values.zTtext_config is None. Initializing the text config with default values (`OPTConfig`).r.   optg      ?rT   r   )r   r   r9   infor   r0   rL   ra   r	   text_configtie_word_embeddingsis_encoder_decodernum_query_tokensvideo_token_indexr   r_   r.   r   use_decoder_only_language_modelinitializer_factorr!   )	r&   r0   ra   rh   rk   rl   r'   text_model_typer(   s	           r)   r   z InstructBlipVideoConfig.__init__:  sD    	""6""" MKKtuuu!NKKvwwwKKKnooo:KK]KK<NN~NN7C{7R7R+l33X])/:II[II#'#3#G "&"2"E 0!2262D2P//3/?/JNo/o,"%!%r*   r0   ra   rh   c                      | d|                                 |                                 |                                 d|S )a  
        Instantiate a [`InstructBlipVideoConfig`] (or a derived class) from a InstructBlipVideo vision model, Q-Former and
        language model configurations.

        Returns:
            [`InstructBlipVideoConfig`]: An instance of a configuration object
        )r0   ra   rh   r   )to_dict)r=   r0   ra   rh   r'   s        r)    from_vision_qformer_text_configsz8InstructBlipVideoConfig.from_vision_qformer_text_configs`  sY      s 
'//11)1133#++--
 
 	
 
 	
r*   )NNNrd   N)rA   rB   rC   rD   r.   r   rE   r   rL   r   rr   rI   rJ   s   @r)   rc   rc      s        5 5n %J $& $& $& $& $& $&L 
4
 7
 &	
 
 
 [
 
 
 
 
r*   rc   )rG   typingr   configuration_utilsr   models.auto.modeling_autor   utilsr   autor	   
get_loggerrA   r9   r   rL   rc   r   r*   r)   <module>ry      s%  , 
			       3 3 3 3 3 3 J J J J J J       ! ! ! ! ! ! 
	H	%	%b4 b4 b4 b4 b4$4 b4 b4 b4Jv4 v4 v4 v4 v4%5 v4 v4 v4ru
 u
 u
 u
 u
. u
 u
 u
 u
 u
r*   