
    g"                         d Z ddlmZ ddlmZmZmZmZ ddlm	Z	 ddl
mZ ddlmZ erddlmZmZ  ej        e          Z G d	 d
e	          Z G d de          ZdS )zOpenAI ImageGPT configuration    OrderedDict)TYPE_CHECKINGAnyMappingOptional   )PretrainedConfig)
OnnxConfig)logging)FeatureExtractionMixin
TensorTypec                   ^     e Zd ZdZdZdgZdddddZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )ImageGPTConfigam  
    This is the configuration class to store the configuration of a [`ImageGPTModel`] or a [`TFImageGPTModel`]. It is
    used to instantiate a GPT-2 model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the ImageGPT
    [openai/imagegpt-small](https://huggingface.co/openai/imagegpt-small) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 512):
            Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`ImageGPTModel`] or [`TFImageGPTModel`].
        n_positions (`int`, *optional*, defaults to 32*32):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        n_embd (`int`, *optional*, defaults to 512):
            Dimensionality of the embeddings and hidden states.
        n_layer (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        n_head (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        n_inner (`int`, *optional*, defaults to None):
            Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
        activation_function (`str`, *optional*, defaults to `"quick_gelu"`):
            Activation function (can be one of the activation functions defined in src/transformers/activations.py).
            Defaults to "quick_gelu".
        resid_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        embd_pdrop (`int`, *optional*, defaults to 0.1):
            The dropout ratio for the embeddings.
        attn_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon to use in the layer normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        scale_attn_weights (`bool`, *optional*, defaults to `True`):
            Scale attention weights by dividing by sqrt(hidden_size)..
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
            Whether to additionally scale attention weights by `1 / layer_idx + 1`.
        reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
            Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
            dot-product/softmax to float() when training with mixed precision.

    Example:

    ```python
    >>> from transformers import ImageGPTConfig, ImageGPTModel

    >>> # Initializing a ImageGPT configuration
    >>> configuration = ImageGPTConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = ImageGPTModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```imagegptpast_key_valuesn_embdn_positionsn_headn_layer)hidden_sizemax_position_embeddingsnum_attention_headsnum_hidden_layers              N
quick_gelu皙?h㈵>{Gz?TFc                 ,   || _         || _        || _        || _        || _        || _        || _        || _        |	| _        |
| _	        || _
        || _        || _        || _        || _        || _        || _         t#                      j        dd|i| d S )Ntie_word_embeddings )
vocab_sizer   r   r   r   n_inneractivation_functionresid_pdrop
embd_pdrop
attn_pdroplayer_norm_epsiloninitializer_rangescale_attn_weights	use_cachescale_attn_by_inverse_layer_idxreorder_and_upcast_attnr%   super__init__)selfr'   r   r   r   r   r(   r)   r*   r+   r,   r-   r.   r/   r0   r%   r1   r2   kwargs	__class__s                      o/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/imagegpt/configuration_imagegpt.pyr4   zImageGPTConfig.__init__h   s    * %&#6 &$$"4!2"4"/N,'>$#6 KK-@KFKKKKK    )r   r   r   r   r   Nr    r!   r!   r!   r"   r#   TTFFF)	__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferenceattribute_mapr4   __classcell__)r7   s   @r8   r   r      s        = =~ J#4"5#0'&	 M (!(- %%'L 'L 'L 'L 'L 'L 'L 'L 'L 'Lr9   r   c                       e Zd Zedeeeeef         f         fd            Z	 	 	 	 	 	 	 dd	d
dededede	d         dedededeee
f         fdZdS )ImageGPTOnnxConfigreturnc                 ,    t          ddddfg          S )N	input_idsbatchsequence)r      r   )r5   s    r8   inputszImageGPTOnnxConfig.inputs   s)    'j99:
 
 	
r9   rI   FNr	       preprocessorr   
batch_size
seq_lengthis_pair	frameworkr   num_channelsimage_widthimage_heightc	                 j    |                      ||||          }	t           ||	|                    }
|
S )a  
        Generate inputs to provide to the ONNX exporter for the specific framework

        Args:
            preprocessor ([`PreTrainedTokenizerBase`] or [`FeatureExtractionMixin`]):
                The preprocessor associated with this model configuration.
            batch_size (`int`, *optional*, defaults to -1):
                The batch size to export the model for (-1 means dynamic axis).
            num_choices (`int`, *optional*, defaults to -1):
                The number of candidate answers provided for multiple choice task (-1 means dynamic axis).
            seq_length (`int`, *optional*, defaults to -1):
                The sequence length to export the model for (-1 means dynamic axis).
            is_pair (`bool`, *optional*, defaults to `False`):
                Indicate if the input is a pair (sentence 1, sentence 2)
            framework (`TensorType`, *optional*, defaults to `None`):
                The framework (PyTorch or TensorFlow) that the tokenizer will generate tensors for.
            num_channels (`int`, *optional*, defaults to 3):
                The number of channels of the generated images.
            image_width (`int`, *optional*, defaults to 40):
                The width of the generated images.
            image_height (`int`, *optional*, defaults to 40):
                The height of the generated images.

        Returns:
            Mapping[str, Tensor] holding the kwargs to provide to the model's forward function
        )imagesreturn_tensors)_generate_dummy_imagesdict)r5   rM   rN   rO   rP   rQ   rR   rS   rT   input_imagerJ   s              r8   generate_dummy_inputsz(ImageGPTOnnxConfig.generate_dummy_inputs   s@    L 11*lLZeffll+iPPPQQr9   )rI   rK   FNr	   rL   rL   )r:   r;   r<   propertyr   strintrJ   boolr   r   r[   r&   r9   r8   rC   rC      s        
WS#X%6 67 
 
 
 X
 ,0) ).) ) 	)
 ) L)) ) ) ) 
c	) ) ) ) ) )r9   rC   N)r=   collectionsr   typingr   r   r   r   configuration_utilsr
   onnxr   utilsr    r   r   
get_loggerr:   loggerr   rC   r&   r9   r8   <module>rh      s   $ # # # # # # # 8 8 8 8 8 8 8 8 8 8 8 8 3 3 3 3 3 3              766666666		H	%	%pL pL pL pL pL% pL pL pLf2 2 2 2 2 2 2 2 2 2r9   