
    g1                         d Z ddlZddlmZ ddlmZ ddlmZ ddlm	Z	  ej
        e          Z G d	 d
e          Z G d de          Z G d de          ZdS )zIdefics2 model configuration    N)Union   )PretrainedConfig)logging   )CONFIG_MAPPINGc                   x     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 d fd	Zedeee	j
        f         ddfd            Z xZS )Idefics2VisionConfiga  
    This is the configuration class to store the configuration of a [`Idefics2VisionModel`]. It is used to instantiate a
    Idefics2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint
    [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) used in the Idefics2 model
    [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation for initializing all weight matrices in the model.

    Example:

    ```python
    >>> from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
    >>> from transformers.models.idefics2.configuration_idefics2 import Idefics2VisionConfig

    >>> # Initializing a Idefics2VisionConfig with google/siglip-base-patch16-224 style configuration
    >>> configuration = Idefics2VisionConfig()

    >>> # Initializing a Idefics2VisionTransformer (with random weights) from the google/siglip-base-patch16-224 style configuration
    >>> model = Idefics2VisionTransformer(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```idefics2         r          gelu_pytorch_tanhư>        {Gz?c                      t                      j        di | || _        || _        || _        || _        || _        || _        || _        |
| _	        |	| _
        || _        || _        d S )N )super__init__hidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_channels
patch_size
image_sizeattention_dropoutlayer_norm_eps
hidden_actinitializer_range)selfr   r   r   r   r   r   r   r"   r!   r    r#   kwargs	__class__s                o/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/idefics2/configuration_idefics2.pyr   zIdefics2VisionConfig.__init__Q   s}     	""6"""&!2!2#6 ($$!2,$!2    pretrained_model_name_or_pathreturnr   c                 N   |                      |            | j        |fi |\  }}|                    d          dk    r|d         }d|v rMt          | d          r=|d         | j        k    r,t
                              d|d          d| j         d            | j        |fi |S )N
model_typer   vision_configzYou are using a model of type z  to instantiate a model of type zN. This is not supported for all configurations of models and can yield errors.)_set_token_in_kwargsget_config_dictgethasattrr,   loggerwarning	from_dict)clsr)   r%   config_dicts       r'   from_pretrainedz$Idefics2VisionConfig.from_pretrainedn   s      (((1c12OZZSYZZV ??<((J66%o6K;&&73+E+E&+VbJcgjguJuJuNNr\1J r r>r r r  
 s}[33F333r(   )r   r   r   r   r   r   r   r   r   r   r   )__name__
__module____qualname____doc__r,   r   classmethodr   strosPathLiker7   __classcell__r&   s   @r'   r
   r
      s        1 1f J &3 3 3 3 3 3: 4E#r{BR<S 4bt 4 4 4 [4 4 4 4 4r(   r
   c                   :     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 d fd	Z xZS )Idefics2PerceiverConfiga  
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the perceiver block.
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        resampler_n_latents (`int`, *optional*, defaults to 64):
            Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
        resampler_depth (`int`, *optional*, defaults to 3):
            Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (<= 3).
        resampler_n_heads (`int`, *optional*, defaults to 16):
            Number of heads in each Transformer block (for multi-headed self-attention).
        resampler_head_dim (`int`, *optional*, defaults to 96):
            Dimensionality of each head projection in the Transformer block.
        num_key_value_heads (`int`, *optional*, defaults to 4):
            Number of key-value heads in the perceiver attention block.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
    r   silu   r   @   r      `      r   c
                    || _         || _        || _        || _        || _        || _        || _        || _        |	| _        | j        | j        k    rt          d| j         d| j                    t                      j        di |
 d S )Nznum_key_value_heads=z1 must be less than or equal to resampler_n_heads=r   )r"   r   rms_norm_epsresampler_n_latentsresampler_depthresampler_n_headsnum_key_value_headsresampler_head_dimr    
ValueErrorr   r   )r$   r"   r   rK   rL   rM   rN   rP   rO   r    r%   r&   s              r'   r   z Idefics2PerceiverConfig.__init__   s     %&(#6 .!2#6 "4!2#d&<<<?t'? ? ?&*&<? ?   	""6"""""r(   )	rD   rE   r   rF   r   rG   rH   rI   r   )r8   r9   r:   r;   r,   r   r@   rA   s   @r'   rC   rC      sk         2 J # # # # # # # # # #r(   rC   c                   8     e Zd ZdZdZdZ	 	 	 	 	 	 d fd	Z xZS )	Idefics2Configa  
    This is the configuration class to store the configuration of a [`Idefics2Model`]. It is used to instantiate a
    Idefics2 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the model of the Idefics2
    [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should cache the key/value pairs of the attention mechanism.
        image_token_id (`int`, *optional*, defaults to 32001):
            The id of the "image" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether or not to tie the word embeddings with the token embeddings.
        vision_config (`IdeficsVisionConfig` or `dict`, *optional*):
            Custom vision config or dict
        perceiver_config (`IdeficsPerceiverConfig` or `dict`, *optional*):
            Custom perceiver config or dict
        text_config (`MistralConfig` or `dict`, *optional*):
            Custom text config or dict for the text model

    Example:
    ```python
    >>> from transformers import Idefics2Model, Idefics2Config
    >>> # Initializing configuration
    >>> configuration = Idefics2Config()
    >>> # Initializing a model from the configuration
    >>> model = Idefics2Model(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```r   T}  FNc                    || _         || _        || _        |.t                      | _        t
                              d           nCt          |t                    rt          di || _        nt          |t                    r|| _        |.t                      | _
        t
                              d           nCt          |t                    rt          di || _
        nt          |t                    r|| _
        t          |t                    r*d|v r|d         nd|d<   t          |d                  di |}n5|3t
                              d           t          d         dddd	
          }|| _        | j        j        | j        j        k    rF| j        j        | j        _        | j        j        | j        _        t
                              d            t!                      j        di |d|i d S )Nz7perciver_config is None, using default perceiver configz2vision_config is None, using default vision configr,   mistralz.text_config is None, using default text configi   gh㈵>r   F)max_position_embeddingsrK   pad_token_idtie_word_embeddingszPerceiver config has a different `hidden_size` than text config, which means default values were used. In your model's config on the hub, add `hidden_size` and `rms_norm_eps` keys under the `perceiver_config` dict. rY   r   )image_token_id	use_cacherY   rC   perceiver_configr2   info
isinstancedictr
   r-   r   text_configr   rK   warning_oncer   r   )	r$   r[   rZ   rY   r-   r\   r`   r%   r&   s	           r'   r   zIdefics2Config.__init__   s     -"#6 #$;$=$=D!KKQRRRR($// 	5$;$O$O>N$O$OD!!(*ABB 	5$4D! !5!7!7DKKLMMMMt,, 	/!5!F!F!F!FD';<< 	/!.Dk4(( 	EQU`E`E`L(A(AfoK%(\)BCRRkRRKK KKHIII(3(0!$)  K ''4+@+LLL040@0LD!-151A1ND!.C  
 	KK6KK7JKKKKKKr(   )TrT   FNNN)r8   r9   r:   r;   r,   is_compositionr   r@   rA   s   @r'   rS   rS      sr           D JN !4L 4L 4L 4L 4L 4L 4L 4L 4L 4Lr(   rS   )r;   r>   typingr   configuration_utilsr   utilsr   autor   
get_loggerr8   r2   r
   rC   rS   r   r(   r'   <module>rh      s   # " 				       3 3 3 3 3 3       ! ! ! ! ! ! 
	H	%	%c4 c4 c4 c4 c4+ c4 c4 c4L7# 7# 7# 7# 7#. 7# 7# 7#tZL ZL ZL ZL ZL% ZL ZL ZL ZL ZLr(   