# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING

from ...utils import (
    OptionalDependencyNotAvailable,
    _LazyModule,
    is_flax_available,
    is_sentencepiece_available,
    is_tokenizers_available,
    is_torch_available,
)


_import_structure = {
    "configuration_gemma": ["GemmaConfig"],
}

try:
    if not is_sentencepiece_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["tokenization_gemma"] = ["GemmaTokenizer"]

try:
    if not is_tokenizers_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["tokenization_gemma_fast"] = ["GemmaTokenizerFast"]


try:
    if not is_torch_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["modeling_gemma"] = [
        "GemmaForCausalLM",
        "GemmaModel",
        "GemmaPreTrainedModel",
        "GemmaForSequenceClassification",
        "GemmaForTokenClassification",
    ]

try:
    if not is_flax_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["modeling_flax_gemma"] = [
        "FlaxGemmaForCausalLM",
        "FlaxGemmaModel",
        "FlaxGemmaPreTrainedModel",
    ]


if TYPE_CHECKING:
    from .configuration_gemma import GemmaConfig

    try:
        if not is_sentencepiece_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .tokenization_gemma import GemmaTokenizer

    try:
        if not is_tokenizers_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .tokenization_gemma_fast import GemmaTokenizerFast

    try:
        if not is_torch_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .modeling_gemma import (
            GemmaForCausalLM,
            GemmaForSequenceClassification,
            GemmaForTokenClassification,
            GemmaModel,
            GemmaPreTrainedModel,
        )

    try:
        if not is_flax_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .modeling_flax_gemma import (
            FlaxGemmaForCausalLM,
            FlaxGemmaModel,
            FlaxGemmaPreTrainedModel,
        )


else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
