
    g+                         d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
  e
j        e          Z G d d	e          Z G d
 de          ZdS )zFlaubert configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingc                   |     e Zd ZdZdZdddddZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )FlaubertConfiga  
    This is the configuration class to store the configuration of a [`FlaubertModel`] or a [`TFFlaubertModel`]. It is
    used to instantiate a FlauBERT model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the FlauBERT
    [flaubert/flaubert_base_uncased](https://huggingface.co/flaubert/flaubert_base_uncased) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        pre_norm (`bool`, *optional*, defaults to `False`):
            Whether to apply the layer normalization before or after the feed forward layer following the attention in
            each layer (Vaswani et al., Tensor2Tensor for Neural Machine Translation. 2018)
        layerdrop (`float`, *optional*, defaults to 0.0):
            Probability to drop layers during training (Fan et al., Reducing Transformer Depth on Demand with
            Structured Dropout. ICLR 2020)
        vocab_size (`int`, *optional*, defaults to 30145):
            Vocabulary size of the FlauBERT model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`FlaubertModel`] or [`TFFlaubertModel`].
        emb_dim (`int`, *optional*, defaults to 2048):
            Dimensionality of the encoder layers and the pooler layer.
        n_layer (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        n_head (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for the attention mechanism
        gelu_activation (`bool`, *optional*, defaults to `True`):
            Whether or not to use a *gelu* activation instead of *relu*.
        sinusoidal_embeddings (`bool`, *optional*, defaults to `False`):
            Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.
        causal (`bool`, *optional*, defaults to `False`):
            Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in
            order to only attend to the left-side context instead if a bidirectional context.
        asm (`bool`, *optional*, defaults to `False`):
            Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction
            layer.
        n_langs (`int`, *optional*, defaults to 1):
            The number of languages the model handles. Set to 1 for monolingual models.
        use_lang_emb (`bool`, *optional*, defaults to `True`)
            Whether to use language embeddings. Some models use additional language embeddings, see [the multilingual
            models page](http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings) for information
            on how to use them.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        embed_init_std (`float`, *optional*, defaults to 2048^-0.5):
            The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.
        init_std (`int`, *optional*, defaults to 50257):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the
            embedding matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        bos_index (`int`, *optional*, defaults to 0):
            The index of the beginning of sentence token in the vocabulary.
        eos_index (`int`, *optional*, defaults to 1):
            The index of the end of sentence token in the vocabulary.
        pad_index (`int`, *optional*, defaults to 2):
            The index of the padding token in the vocabulary.
        unk_index (`int`, *optional*, defaults to 3):
            The index of the unknown token in the vocabulary.
        mask_index (`int`, *optional*, defaults to 5):
            The index of the masking token in the vocabulary.
        is_encoder(`bool`, *optional*, defaults to `True`):
            Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.
        summary_type (`string`, *optional*, defaults to "first"):
            Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

            Has to be one of the following options:

                - `"last"`: Take the last token hidden state (like XLNet).
                - `"first"`: Take the first token hidden state (like BERT).
                - `"mean"`: Take the mean of all tokens hidden states.
                - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
                - `"attn"`: Not implemented now, use multi-head attention.
        summary_use_proj (`bool`, *optional*, defaults to `True`):
            Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

            Whether or not to add a projection after the vector extraction.
        summary_activation (`str`, *optional*):
            Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

            Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
        summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
            Used in the sequence classification and multiple choice models.

            Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
        summary_first_dropout (`float`, *optional*, defaults to 0.1):
            Used in the sequence classification and multiple choice models.

            The dropout ratio to be used after the projection and activation.
        start_n_top (`int`, *optional*, defaults to 5):
            Used in the SQuAD evaluation script.
        end_n_top (`int`, *optional*, defaults to 5):
            Used in the SQuAD evaluation script.
        mask_token_id (`int`, *optional*, defaults to 0):
            Model agnostic parameter to identify masked tokens when generating text in an MLM context.
        lang_id (`int`, *optional*, defaults to 1):
            The ID of the language used by the model. This parameter is used when generating text in a given language.
    flaubertemb_dimn_headsn_layers
vocab_size)hidden_sizenum_attention_headsnum_hidden_layersn_wordsF        u           皙?T      ;f?-q={Gz?r      r      firstNc$                 0   || _         || _        || _        || _        || _        || _        || _        || _        |	| _        |
| _	        || _
        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        | | _        |!| _         d|$v r|$d         | _!         tE                      j#        d|"|#d|$ dS )zConstructs FlaubertConfig.r   )pad_token_idbos_token_idN )$pre_norm	layerdropr   r   r   r   dropoutattention_dropoutgelu_activationsinusoidal_embeddingscausalasmn_langsuse_lang_emblayer_norm_eps	bos_index	eos_index	pad_index	unk_index
mask_index
is_encodermax_position_embeddingsembed_init_stdinit_stdsummary_typesummary_use_projsummary_activationsummary_proj_to_labelssummary_first_dropoutstart_n_top	end_n_topmask_token_idlang_idr   super__init__)&selfr&   r'   r   r   r   r   r(   r)   r*   r+   r,   r-   r.   r/   r7   r8   r0   r9   r1   r2   r3   r4   r5   r6   r:   r;   r<   r=   r>   r?   r@   rA   rB   r#   r$   kwargs	__class__s&                                        o/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/flaubert/configuration_flaubert.pyrD   zFlaubertConfig.__init__   s=   P !"$ !2.%:"(,""""$$'>$, ( 0"4&<#%:"&"*!),DLXlXXQWXXXXX    )#Fr   r   r   r   r   r   r   TFFFr   Tr   r   r   r   r   r   r   r   r    Tr!   TNTr   r    r    r   r   r   r   )__name__
__module____qualname____doc__
model_typeattribute_maprD   __classcell__)rG   s   @rH   r
   r
      s        e eN J ('	 M # #!#!IMY MY MY MY MY MY MY MY MY MYrI   r
   c                   J    e Zd Zedeeeeef         f         fd            ZdS )FlaubertOnnxConfigreturnc                 Z    | j         dk    rdddd}nddd}t          d|fd|fg          S )	Nzmultiple-choicebatchchoicesequence)r   r   r   )r   r   	input_idsattention_mask)taskr   )rE   dynamic_axiss     rH   inputszFlaubertOnnxConfig.inputs   sU    9)))&8
CCLL&:66Ll+!<0
 
 	
rI   N)rJ   rK   rL   propertyr   strintr\   r%   rI   rH   rR   rR      sL        

WS#X%6 67 

 

 

 X

 

 

rI   rR   N)rM   collectionsr   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerrJ   loggerr
   rR   r%   rI   rH   <module>rg      s      # # # # # #       3 3 3 3 3 3             
	H	%	%}Y }Y }Y }Y }Y% }Y }Y }Y@
 
 
 
 
 
 
 
 
 
rI   