
    g*                     ^    d Z ddlmZ ddlmZ  ej        e          Z G d de          ZdS )zFalcon configuration   )PretrainedConfig)loggingc                        e Zd ZdZdZdgZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Zed             Zed             Z	 xZ
S )FalconConfiga  
    This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the
    [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 65024):
            Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`FalconModel`]
        hidden_size (`int`, *optional*, defaults to 4544):
            Dimension of the hidden representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 71):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_ln_in_parallel_attn (`int`, *optional*):
            Set to 2 if separate layer norms are to be used for the MLP and the attention output when using parallel
            attention, otherwise, 1.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether the model should return the last key/values attentions (not used by all models). Only relevant if
            `config.is_decoder=True`.
        hidden_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for MLP layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for attention layers.
        num_kv_heads (`int`, *optional*):
            Number of key-value heads to use per attention layer. If unset, defaults to the same value as
            `num_attention_heads`.
        alibi (`bool`, *optional*, defaults to `False`):
            Whether to use ALiBi positional biases during self-attention.
        new_decoder_architecture (`bool`, *optional*, defaults to `False`):
            Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
            arguments are ignored, as the new decoder always uses parallel attention.
        multi_query (`bool`, *optional*, defaults to `True`):
            Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
        parallel_attn (`bool`, *optional*, defaults to `True`):
            Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
            instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
        bias (`bool`, *optional*, defaults to `False`):
            Whether to use bias on Linear layers.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with, when `alibi` is `False`. Pretrained
            Falcon models with RoPE support up to 2048 tokens.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        bos_token_id (`int`, *optional*, defaults to 11):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 11):
            The id of the "end-of-sequence" token.
        ffn_hidden_size (`int`, *optional*):
            The hidden size of the feedforward layer in the Transformer decoder.
            defaults to 4x hidden dim
        activation (`str`, *optional*, defaults to `"gelu"`):
            The activation function used in the feedforward layer.

    Example:

    ```python
    >>> from transformers import FalconModel, FalconConfig

    >>> # Initializing a small (2-layer) Falcon configuration
    >>> configuration = FalconConfig(num_hidden_layers=2)

    >>> # Initializing a model from the small configuration
    >>> model = FalconModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```falconpast_key_values         G   Nh㈵>{Gz?T        F        @   geluc                    || _         |                    dd           }||n|| _        || _        || _        || _        || _        || _        |	| _        |
| _	        || _
        || _        ||n|| _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        ||dz  | _        n|| _         t1                      j        d||d| d S )Nn_embed   )bos_token_ideos_token_id )
vocab_sizepophidden_sizenum_hidden_layersnum_attention_headslayer_norm_epsiloninitializer_range	use_cachehidden_dropoutattention_dropoutr   r   num_kv_headsalibinew_decoder_architecturemulti_queryparallel_attnbiasnum_ln_in_parallel_attnmax_position_embeddings
rope_thetarope_scaling
activationffn_hidden_sizesuper__init__)selfr   r   r   r   r*   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r+   r,   r-   r   r   r/   r.   kwargsr   	__class__s                             k/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/falcon/configuration_falcon.pyr1   zFalconConfig.__init__   s   6 %**Y--*1/;;w!2#6 "4!2",!2((3?3G//\
(@%&*	'>$'>$$($"#.?D  #2D XlXXQWXXXXX    c                      | j         | j        z  S N)r   r   r2   s    r5   head_dimzFalconConfig.head_dim   s    4#;;;r6   c                     | j          S r8   )r%   r9   s    r5   rotaryzFalconConfig.rotary   s    :~r6   )r	   r
   r   r   Nr   r   Tr   r   NFFTTFr   r   Nr   r   Nr   )__name__
__module____qualname____doc__
model_typekeys_to_ignore_at_inferencer1   propertyr:   r<   __classcell__)r4   s   @r5   r   r      s        r rh J#4"5  $!& $18Y 8Y 8Y 8Y 8Y 8Yt < < X<   X    r6   r   N)	r@   configuration_utilsr   utilsr   
get_loggerr=   loggerr   r   r6   r5   <module>rI      s      3 3 3 3 3 3       
	H	%	%x x x x x# x x x x xr6   