
    g                         d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
  e
j        e          Z G d d	e          Z G d
 de          ZdS )zERNIE model configuration    )OrderedDict)Mapping   )PretrainedConfig)
OnnxConfig)loggingc                   L     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )ErnieConfiga  
    This is the configuration class to store the configuration of a [`ErnieModel`] or a [`TFErnieModel`]. It is used to
    instantiate a ERNIE model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the ERNIE
    [nghuyong/ernie-3.0-base-zh](https://huggingface.co/nghuyong/ernie-3.0-base-zh) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the ERNIE model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`ErnieModel`] or [`TFErnieModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`ErnieModel`] or [`TFErnieModel`].
        task_type_vocab_size (`int`, *optional*, defaults to 3):
            The vocabulary size of the `task_type_ids` for ERNIE2.0/ERNIE3.0 model
        use_task_id (`bool`, *optional*, defaults to `False`):
            Whether or not the model support `task_type_ids`
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        classifier_dropout (`float`, *optional*):
            The dropout ratio for the classification head.

    Examples:

    ```python
    >>> from transformers import ErnieConfig, ErnieModel

    >>> # Initializing a ERNIE nghuyong/ernie-3.0-base-zh style configuration
    >>> configuration = ErnieConfig()

    >>> # Initializing a model (with random weights) from the nghuyong/ernie-3.0-base-zh style configuration
    >>> model = ErnieModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ernie:w           gelu皙?      r   F{Gz?-q=r   absoluteTNc                 ,    t                      j        dd|i| || _        || _        || _        || _        || _        || _        || _        || _	        |	| _
        |
| _        || _        || _        || _        || _        || _        || _        || _        d S )Npad_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizetask_type_vocab_sizeuse_task_idinitializer_rangelayer_norm_epsposition_embedding_type	use_cacheclassifier_dropout)selfr   r   r   r   r!   r    r"   r#   r$   r%   r&   r'   r(   r)   r   r*   r+   r,   kwargs	__class__s                       i/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/ernie/configuration_ernie.pyr   zErnieConfig.__init__g   s    , 	==l=f===$&!2#6 $!2#6 ,H)'>$.$8!&!2,'>$""4    )r   r   r   r   r   r   r   r   r   r   r   Fr   r   r   r   TN)__name__
__module____qualname____doc__
model_typer   __classcell__)r/   s   @r0   r
   r
      s        E EN J %( # *'(5 (5 (5 (5 (5 (5 (5 (5 (5 (5r1   r
   c                   J    e Zd Zedeeeeef         f         fd            ZdS )ErnieOnnxConfigreturnc                 f    | j         dk    rdddd}nddd}t          d|fd|fd	|fd
|fg          S )Nzmultiple-choicebatchchoicesequence)r      r   )r   r?   	input_idsattention_masktoken_type_idstask_type_ids)taskr   )r-   dynamic_axiss     r0   inputszErnieOnnxConfig.inputs   se    9)))&8
CCLL&:66Ll+!<0!<0 ,/	
 
 	
r1   N)r2   r3   r4   propertyr   strintrF   r   r1   r0   r9   r9      sL        
WS#X%6 67 
 
 
 X
 
 
r1   r9   N)r5   collectionsr   typingr   configuration_utilsr   onnxr   utilsr   
get_loggerr2   loggerr
   r9   r   r1   r0   <module>rQ      s        # # # # # #       3 3 3 3 3 3             
	H	%	%r5 r5 r5 r5 r5" r5 r5 r5j
 
 
 
 
j 
 
 
 
 
r1   