
    g              	          d Z ddlZddlmZ ddlmZmZmZ ddlZddl	Zddlm
Z
 ddlmZmZmZ ddlmZ dd	lmZ dd
lmZ ddlmZmZ ddlmZmZmZmZmZmZmZm Z m!Z! ddl"m#Z# ddl$m%Z%  e            r	ddl&m'Z'm(Z( nd Z(d Z' ej)        e*          Z+dZ,dZ-g dZ.dZ/dZ0e G d de                      Z1e G d de                      Z2e G d de                      Z3 G d de
j4                  Z5 G d d e
j4                  Z6 G d! d"e
j4                  Z7dId%ej8        d&e9d'e:d(ej8        fd)Z; G d* d+e
j4                  Z< G d, d-e
j4                  Z= G d. d/e
j4                  Z> G d0 d1e
j4                  Z? G d2 d3e
j4                  Z@ G d4 d5e
j4                  ZA G d6 d7e
j4                  ZB G d8 d9e
j4                  ZC G d: d;e
j4                  ZD G d< d=e          ZEd>ZFd?ZG ed@eF           G dA dBeE                      ZH edCeF           G dD dEeE                      ZI edFeF           G dG dHeEe#                      ZJdS )Jz9PyTorch Dilated Neighborhood Attention Transformer model.    N)	dataclass)OptionalTupleUnion)nn)BCEWithLogitsLossCrossEntropyLossMSELoss   )ACT2FN)BackboneOutput)PreTrainedModel) find_pruneable_heads_and_indicesprune_linear_layer)	ModelOutputOptionalDependencyNotAvailableadd_code_sample_docstringsadd_start_docstrings%add_start_docstrings_to_model_forwardis_natten_availableloggingreplace_return_docstringsrequires_backends)BackboneMixin   )DinatConfig)
natten2davnatten2dqkrpbc                      t                      Nr   argskwargss     d/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/dinat/modeling_dinat.pyr   r   1       ,...    c                      t                      r    r!   r"   s     r%   r   r   4   r&   r'   r   zshi-labs/dinat-mini-in1k-224)r      r)   i   ztabby, tabby catc                       e Zd ZU dZdZej        ed<   dZe	e
ej        df                  ed<   dZe	e
ej        df                  ed<   dZe	e
ej        df                  ed<   dS )DinatEncoderOutputa  
    Dinat encoder's outputs, with potential hidden states and attentions.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, hidden_size, height, width)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
            include the spatial dimensions.
    Nlast_hidden_state.hidden_states
attentionsreshaped_hidden_states)__name__
__module____qualname____doc__r,   torchFloatTensor__annotations__r-   r   r   r.   r/    r'   r%   r+   r+   I   s          2 ,0u(///=AM8E%"3S"89:AAA:>Ju0#567>>>FJHU5+<c+A%BCJJJJJr'   r+   c                       e Zd ZU dZdZej        ed<   dZe	ej                 ed<   dZ
e	eej        df                  ed<   dZe	eej        df                  ed<   dZe	eej        df                  ed<   dS )	DinatModelOutputaU  
    Dinat model's outputs that also contains a pooling of the last hidden states.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
            Average pooling of the last layer hidden-state.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, hidden_size, height, width)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
            include the spatial dimensions.
    Nr,   pooler_output.r-   r.   r/   )r0   r1   r2   r3   r,   r4   r5   r6   r:   r   r-   r   r.   r/   r7   r'   r%   r9   r9   j   s          6 ,0u(///15M8E-.555=AM8E%"3S"89:AAA:>Ju0#567>>>FJHU5+<c+A%BCJJJJJr'   r9   c                       e Zd ZU dZdZeej                 ed<   dZ	ej        ed<   dZ
eeej        df                  ed<   dZeeej        df                  ed<   dZeeej        df                  ed<   dS )	DinatImageClassifierOutputa  
    Dinat outputs for image classification.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
            shape `(batch_size, hidden_size, height, width)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
            include the spatial dimensions.
    Nlosslogits.r-   r.   r/   )r0   r1   r2   r3   r=   r   r4   r5   r6   r>   r-   r   r.   r/   r7   r'   r%   r<   r<      s          6 )-D(5$
%,,, $FE$$$=AM8E%"3S"89:AAA:>Ju0#567>>>FJHU5+<c+A%BCJJJJJr'   r<   c                   ^     e Zd ZdZ fdZdeej                 deej	                 fdZ
 xZS )DinatEmbeddingsz6
    Construct the patch and position embeddings.
    c                     t                                                       t          |          | _        t	          j        |j                  | _        t	          j        |j	                  | _
        d S r    )super__init__DinatPatchEmbeddingspatch_embeddingsr   	LayerNorm	embed_dimnormDropouthidden_dropout_probdropoutselfconfig	__class__s     r%   rC   zDinatEmbeddings.__init__   sU     4V < <L!122	z&"<==r'   pixel_valuesreturnc                     |                      |          }|                     |          }|                     |          }|S r    )rE   rH   rK   )rM   rP   
embeddingss      r%   forwardzDinatEmbeddings.forward   s=    **<88
YYz**
\\*--
r'   )r0   r1   r2   r3   rC   r   r4   r5   r   TensorrT   __classcell__rO   s   @r%   r@   r@      ss         > > > > >HU->$? E%,DW        r'   r@   c                   R     e Zd ZdZ fdZdeej                 dej        fdZ	 xZ
S )rD   z
    This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
    `hidden_states` (patch embeddings) of shape `(batch_size, height, width, hidden_size)` to be consumed by a
    Transformer.
    c           
      R   t                                                       |j        }|j        |j        }}|| _        |dk    rnt          d          t          j        t          j        | j        |dz  ddd          t          j        |dz  |ddd                    | _	        d S )N   z2Dinat only supports patch size of 4 at the moment.   r   r   r[   r[   r   r   )kernel_sizestridepadding)
rB   rC   
patch_sizenum_channelsrG   
ValueErrorr   
SequentialConv2d
projection)rM   rN   rb   rc   hidden_sizerO   s        r%   rC   zDinatPatchEmbeddings.__init__   s    &
$*$79Ik(?? QRRR-Id')9vV\flmmmIkQ&PV`fggg
 
r'   rP   rQ   c                     |j         \  }}}}|| j        k    rt          d          |                     |          }|                    dddd          }|S )NzeMake sure that the channel dimension of the pixel values match with the one set in the configuration.r   r[   r   r   )shaperc   rd   rg   permute)rM   rP   _rc   heightwidthrS   s          r%   rT   zDinatPatchEmbeddings.forward   sh    )5);&<4,,,w   __\22
''1a33
r'   )r0   r1   r2   r3   rC   r   r4   r5   rU   rT   rV   rW   s   @r%   rD   rD      sn         
 
 
 
 
"	HU->$? 	EL 	 	 	 	 	 	 	 	r'   rD   c                   l     e Zd ZdZej        fdedej        ddf fdZde	j
        de	j
        fdZ xZS )	DinatDownsamplerz
    Convolutional Downsampling Layer.

    Args:
        dim (`int`):
            Number of input channels.
        norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
            Normalization layer class.
    dim
norm_layerrQ   Nc                     t                                                       || _        t          j        |d|z  dddd          | _         |d|z            | _        d S )Nr[   r\   r]   r^   F)r_   r`   ra   bias)rB   rC   rq   r   rf   	reductionrH   )rM   rq   rr   rO   s      r%   rC   zDinatDownsampler.__init__   s]    3CVF\binoooJq3w''			r'   input_featurec                     |                      |                    dddd                                        dddd          }|                     |          }|S )Nr   r   r   r[   )ru   rk   rH   )rM   rv   s     r%   rT   zDinatDownsampler.forward   sV    }'<'<Q1a'H'HIIQQRSUVXY[\]]		-00r'   )r0   r1   r2   r3   r   rF   intModulerC   r4   rU   rT   rV   rW   s   @r%   rp   rp      s          :< ( (C (RY ($ ( ( ( ( ( (U\ el        r'   rp           Finput	drop_probtrainingrQ   c                     |dk    s|s| S d|z
  }| j         d         fd| j        dz
  z  z   }|t          j        || j        | j                  z   }|                                 |                     |          |z  }|S )aF  
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
    however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
    layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
    argument.
    rz   r   r   )r   )dtypedevice)rj   ndimr4   randr   r   floor_div)r{   r|   r}   	keep_probrj   random_tensoroutputs          r%   	drop_pathr     s     CxII[^
Q 77E
5EL Y Y YYMYYy!!M1FMr'   c                   j     e Zd ZdZd	dee         ddf fdZdej        dej        fdZ	de
fdZ xZS )
DinatDropPathzXDrop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).Nr|   rQ   c                 V    t                                                       || _        d S r    )rB   rC   r|   )rM   r|   rO   s     r%   rC   zDinatDropPath.__init__  s$    "r'   r-   c                 8    t          || j        | j                  S r    )r   r|   r}   rM   r-   s     r%   rT   zDinatDropPath.forward   s    FFFr'   c                 6    d                     | j                  S )Nzp={})formatr|   rM   s    r%   
extra_reprzDinatDropPath.extra_repr#  s    }}T^,,,r'   r    )r0   r1   r2   r3   r   floatrC   r4   rU   rT   strr   rV   rW   s   @r%   r   r     s        bb# #(5/ #T # # # # # #GU\ Gel G G G G-C - - - - - - - -r'   r   c                   h     e Zd Z fdZd Z	 ddej        dee         de	ej                 fdZ
 xZS )	NeighborhoodAttentionc                    t                                                       ||z  dk    rt          d| d| d          || _        t	          ||z            | _        | j        | j        z  | _        || _        || _        t          j
        t          j        |d| j        z  dz
  d| j        z  dz
                      | _        t          j        | j        | j        |j                  | _        t          j        | j        | j        |j                  | _        t          j        | j        | j        |j                  | _        t          j        |j                  | _        d S )Nr   zThe hidden size (z6) is not a multiple of the number of attention heads ()r[   r   )rt   )rB   rC   rd   num_attention_headsrx   attention_head_sizeall_head_sizer_   dilationr   	Parameterr4   zerosrpbLinearqkv_biasquerykeyvaluerI   attention_probs_dropout_probrK   rM   rN   rq   	num_headsr_   r   rO   s         r%   rC   zNeighborhoodAttention.__init__(  sG   ?akCkk_hkkk   $- #&sY#7#7 !58PP&  <ID<L8Lq8PTUX\XhThklTl n nooYt143EFO\\\
9T/1C&/ZZZYt143EFO\\\
z&"EFFr'   c                     |                                 d d         | j        | j        fz   }|                    |          }|                    ddddd          S )Nr   r   r   r[   rZ   )sizer   r   viewrk   )rM   xnew_x_shapes      r%   transpose_for_scoresz*NeighborhoodAttention.transpose_for_scores>  sR    ffhhssmt'?AY&ZZFF;yyAq!Q'''r'   Fr-   output_attentionsrQ   c                    |                      |                     |                    }|                      |                     |                    }|                      |                     |                    }|t	          j        | j                  z  }t          ||| j        | j	        | j
                  }t          j                            |d          }|                     |          }t          ||| j	        | j
                  }|                    ddddd                                          }|                                d d         | j        fz   }	|                    |	          }|r||fn|f}
|
S )	Nr   rq   r   r[   r   r   rZ   )r   r   r   r   mathsqrtr   r   r   r_   r   r   
functionalsoftmaxrK   r   rk   
contiguousr   r   r   )rM   r-   r   query_layer	key_layervalue_layerattention_scoresattention_probscontext_layernew_context_layer_shapeoutputss              r%   rT   zNeighborhoodAttention.forwardC  sb   
 //

=0I0IJJ--dhh}.E.EFF	//

=0I0IJJ
 "DId.F$G$GG )i4K[]a]jkk -//0@b/II ,,77"?KAQSWS`aa%--aAq!<<GGII"/"4"4"6"6ss";t?Q>S"S%**+BCC6G]=/22mM]r'   F)r0   r1   r2   rC   r   r4   rU   r   boolr   rT   rV   rW   s   @r%   r   r   '  s        G G G G G,( ( ( -2 | $D> 
u|		       r'   r   c                   P     e Zd Z fdZdej        dej        dej        fdZ xZS )NeighborhoodAttentionOutputc                     t                                                       t          j        ||          | _        t          j        |j                  | _        d S r    )rB   rC   r   r   denserI   r   rK   rM   rN   rq   rO   s      r%   rC   z$NeighborhoodAttentionOutput.__init__f  sD    YsC((
z&"EFFr'   r-   input_tensorrQ   c                 Z    |                      |          }|                     |          }|S r    r   rK   )rM   r-   r   s      r%   rT   z#NeighborhoodAttentionOutput.forwardk  s*    

=11]33r'   r0   r1   r2   rC   r4   rU   rT   rV   rW   s   @r%   r   r   e  sn        G G G G G
U\  RWR^        r'   r   c                   h     e Zd Z fdZd Z	 ddej        dee         de	ej                 fdZ
 xZS )	NeighborhoodAttentionModulec                     t                                                       t          |||||          | _        t	          ||          | _        t                      | _        d S r    )rB   rC   r   rM   r   r   setpruned_headsr   s         r%   rC   z$NeighborhoodAttentionModule.__init__s  sS    )&#y+xXX	1&#>>EEr'   c                    t          |          dk    rd S t          || j        j        | j        j        | j                  \  }}t          | j        j        |          | j        _        t          | j        j        |          | j        _        t          | j        j	        |          | j        _	        t          | j
        j        |d          | j
        _        | j        j        t          |          z
  | j        _        | j        j        | j        j        z  | j        _        | j                            |          | _        d S )Nr   r   r   )lenr   rM   r   r   r   r   r   r   r   r   r   r   union)rM   headsindexs      r%   prune_headsz'NeighborhoodAttentionModule.prune_headsy  s    u::??F7490$)2OQUQb
 
u
 -TY_eDD	*49=%@@	,TY_eDD	.t{/@%QOOO )-	(EE

(R	%"&)"?$)B_"_	 -33E::r'   Fr-   r   rQ   c                     |                      ||          }|                     |d         |          }|f|dd          z   }|S Nr   r   )rM   r   )rM   r-   r   self_outputsattention_outputr   s         r%   rT   z#NeighborhoodAttentionModule.forward  sK    
 yy0ABB;;|AFF#%QRR(88r'   r   )r0   r1   r2   rC   r   r4   rU   r   r   r   rT   rV   rW   s   @r%   r   r   r  s        " " " " "; ; ;* -2 | $D> 
u|		       r'   r   c                   B     e Zd Z fdZdej        dej        fdZ xZS )DinatIntermediatec                 $   t                                                       t          j        |t	          |j        |z                      | _        t          |j        t                    rt          |j                 | _        d S |j        | _        d S r    )rB   rC   r   r   rx   	mlp_ratior   
isinstance
hidden_actr   r   intermediate_act_fnr   s      r%   rC   zDinatIntermediate.__init__  sx    YsC(83(>$?$?@@
f'-- 	9'-f.?'@D$$$'-'8D$$$r'   r-   rQ   c                 Z    |                      |          }|                     |          }|S r    )r   r   r   s     r%   rT   zDinatIntermediate.forward  s,    

=1100??r'   r   rW   s   @r%   r   r     s^        9 9 9 9 9U\ el        r'   r   c                   B     e Zd Z fdZdej        dej        fdZ xZS )DinatOutputc                     t                                                       t          j        t	          |j        |z            |          | _        t          j        |j                  | _	        d S r    )
rB   rC   r   r   rx   r   r   rI   rJ   rK   r   s      r%   rC   zDinatOutput.__init__  sT    Ys6#3c#9::C@@
z&"<==r'   r-   rQ   c                 Z    |                      |          }|                     |          }|S r    r   r   s     r%   rT   zDinatOutput.forward  s*    

=11]33r'   r   rW   s   @r%   r   r     s^        > > > > >
U\ el        r'   r   c            	       x     e Zd Zd	 fd	Zd Z	 d
dej        dee         de	ej        ej        f         fdZ
 xZS )
DinatLayerrz   c                    t                                                       |j        | _        |j        | _        || _        | j        | j        z  | _        t          j        ||j                  | _	        t          |||| j        | j                  | _        |dk    rt          |          nt          j                    | _        t          j        ||j                  | _        t!          ||          | _        t%          ||          | _        |j        dk    r2t          j        |j        t-          j        d|f          z  d          nd | _        d S )Neps)r_   r   rz   r   r[   T)requires_grad)rB   rC   chunk_size_feed_forwardr_   r   window_sizer   rF   layer_norm_epslayernorm_beforer   	attentionr   Identityr   layernorm_afterr   intermediater   r   layer_scale_init_valuer   r4   oneslayer_scale_parameters)rM   rN   rq   r   r   drop_path_raterO   s         r%   rC   zDinatLayer.__init__  s?   '-'E$!- +dm; "Sf6K L L L4C0@4=
 
 
 ;I3:N:N~666TVT_TaTa!|CV5JKKK-fc::!&#.. ,q00 L6QH9M9MM]abbbb 	###r'   c                     | j         }d}||k     s||k     rRdx}}t          d||z
            }t          d||z
            }	dd||||	f}t          j                            ||          }||fS )N)r   r   r   r   r   r   r   )r   maxr   r   pad)
rM   r-   rm   rn   r   
pad_valuespad_lpad_tpad_rpad_bs
             r%   	maybe_padzDinatLayer.maybe_pad  s    &'
K5;#6#6EE;.//E;/00EQueU;JM--mZHHMj((r'   Fr-   r   rQ   c                    |                                 \  }}}}|}|                     |          }|                     |||          \  }}|j        \  }	}
}}	|                     ||          }|d         }|d         dk    p|d         dk    }|r&|d d d |d |d d f                                         }| j        | j        d         |z  }||                     |          z   }|                     |          }| 	                    | 
                    |                    }| j        | j        d         |z  }||                     |          z   }|r
||d         fn|f}|S )N)r   r   r      r   )r   r   r   rj   r   r   r   r   r   r   r   )rM   r-   r   
batch_sizerm   rn   channelsshortcutr   rl   
height_pad	width_padattention_outputsr   
was_paddedlayer_outputlayer_outputss                    r%   rT   zDinatLayer.forward  s   
 /<.@.@.B.B+
FE8 --m<<$(NN=&%$P$P!z&3&9#:y! NN=L]N^^,Q/]Q&;*Q-!*;
 	T/7F7FUFAAA0EFQQSS&2#:1=@PP 4>>2B#C#CC++M::{{4#4#4\#B#BCC&26q9LHL$t~~l'C'CC@Qf'8';<<XdWfr'   )rz   r   )r0   r1   r2   rC   r   r4   rU   r   r   r   rT   rV   rW   s   @r%   r   r     s        
 
 
 
 
 
(	) 	) 	) -2$ $|$ $D>$ 
u|U\)	*	$ $ $ $ $ $ $ $r'   r   c                   b     e Zd Z fdZ	 ddej        dee         deej                 fdZ	 xZ
S )
DinatStagec                 4   t                                                       | _        | _        t	          j        fdt          |          D                       | _        | |t          j                  | _	        nd | _	        d| _
        d S )Nc           
      P    g | ]"}t          |         |                    #S ))rN   rq   r   r   r   )r   ).0irN   	dilationsrq   r   r   s     r%   
<listcomp>z'DinatStage.__init__.<locals>.<listcomp>  sR     	 	 	  !'&q\#1!#4  	 	 	r'   )rq   rr   F)rB   rC   rN   rq   r   
ModuleListrangelayersrF   
downsamplepointing)	rM   rN   rq   depthr   r  r   r  rO   s	    `` ``` r%   rC   zDinatStage.__init__  s    m	 	 	 	 	 	 	 	 u	 	 	
 
 !(jSR\JJJDOO"DOr'   Fr-   r   rQ   c                     |                                 \  }}}}t          | j                  D ]\  }} |||          }|d         }|}	| j        |                     |	          }||	f}
|r|
|dd          z  }
|
S r   )r   	enumerater  r  )rM   r-   r   rl   rm   rn   r  layer_moduler
  !hidden_states_before_downsamplingstage_outputss              r%   rT   zDinatStage.forward  s    
 ,002265!(55 	- 	-OA|(L8IJJM)!,MM,9)?& OO,MNNM&(IJ 	/]122..Mr'   r   )r0   r1   r2   rC   r4   rU   r   r   r   rT   rV   rW   s   @r%   r  r    s            8 -2 | $D> 
u|		       r'   r  c                        e Zd Z fdZ	 	 	 	 ddej        dee         dee         dee         dee         d	ee	e
f         fd
Z xZS )DinatEncoderc                 n    t                                                       t          j                   _         _        d t          j        dj        t          j                            D             t          j         fdt           j                  D                        _        d S )Nc                 6    g | ]}|                                 S r7   )item)r  r   s     r%   r  z)DinatEncoder.__init__.<locals>.<listcomp>,  s     ^^^Aqvvxx^^^r'   r   c                 V   g | ]}t          t          j        d |z  z            j        |         j        |         j        |         t          j        d|                   t          j        d|dz                               |j        dz
  k     rt          nd          S )r[   Nr   )rN   rq   r  r   r  r   r  )	r  rx   rG   depthsr   r  sum
num_levelsrp   )r  i_layerrN   dprrM   s     r%   r  z)DinatEncoder.__init__.<locals>.<listcomp>.  s         !F,q'z9:: -0$.w7$.w7#&s6='+B'C'Cc&-XeZadeZeXeJfFgFg'g#h4;doPQ>Q4Q4Q//X\    r'   )rB   rC   r   r$  r&  rN   r4   linspacer   r%  r   r  r  levels)rM   rN   r(  rO   s   ``@r%   rC   zDinatEncoder.__init__(  s    fm,,^^63H#fmJ\J\!]!]^^^m       %T_55  
 
r'   FTr-   r   output_hidden_states(output_hidden_states_before_downsamplingreturn_dictrQ   c                     |rdnd }|rdnd }|rdnd }|r$|                     dddd          }	||fz  }||	fz  }t          | j                  D ]\  }
} |||          }|d         }|d         }|r'|r%|                     dddd          }	||fz  }||	fz  }n(|r&|s$|                     dddd          }	||fz  }||	fz  }|r||dd          z  }|st          d |||fD                       S t	          ||||          S )Nr7   r   r   r   r[   c              3      K   | ]}||V  	d S r    r7   )r  vs     r%   	<genexpr>z'DinatEncoder.forward.<locals>.<genexpr>c  s(      mmq_`_l_l_l_l_lmmr'   )r,   r-   r.   r/   )rk   r  r*  tupler+   )rM   r-   r   r+  r,  r-  all_hidden_statesall_reshaped_hidden_statesall_self_attentionsreshaped_hidden_stater  r  r
  r  s                 r%   rT   zDinatEncoder.forward<  s    #7@BBD+?%IRRT"$5?bb4 	C$1$9$9!Q1$E$E!-!11&+@*BB&(55 	9 	9OA|(L8IJJM)!,M0=a0@-# 	G(P 	G(I(Q(QRSUVXY[\(](]%!&G%II!*/D.FF**% G.V G(5(=(=aAq(I(I%!m%55!*/D.FF*  9#}QRR'88# 	nmm]4EGZ$[mmmmmm!++*#=	
 
 
 	
r'   )FFFT)r0   r1   r2   rC   r4   rU   r   r   r   r   r+   rT   rV   rW   s   @r%   r  r  '  s        
 
 
 
 
. -2/4CH&*.
 .
|.
 $D>.
 'tn	.

 3;4..
 d^.
 
u((	).
 .
 .
 .
 .
 .
 .
 .
r'   r  c                   $    e Zd ZdZeZdZdZd ZdS )DinatPreTrainedModelz
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    dinatrP   c                    t          |t          j        t          j        f          rT|j        j                            d| j        j                   |j	         |j	        j        
                                 dS dS t          |t          j                  r?|j	        j        
                                 |j        j                            d           dS dS )zInitialize the weightsrz   )meanstdNg      ?)r   r   r   rf   weightdatanormal_rN   initializer_rangert   zero_rF   fill_)rM   modules     r%   _init_weightsz"DinatPreTrainedModel._init_weightsw  s    fry")455 	* M&&CT[5R&SSS{& &&((((( '&-- 	*K""$$$M$$S)))))	* 	*r'   N)	r0   r1   r2   r3   r   config_classbase_model_prefixmain_input_namerD  r7   r'   r%   r8  r8  m  s?         
 L$O
* 
* 
* 
* 
*r'   r8  aH  
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`DinatConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
a  
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
            for details.

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
z_The bare Dinat Model transformer outputting raw hidden-states without any specific head on top.c                        e Zd Zd fd	Zd Zd Z ee           ee	e
ede          	 	 	 	 ddeej                 d	ee         d
ee         dee         deee
f         f
d                        Z xZS )
DinatModelTc                    t                                          |           t          | dg           || _        t	          |j                  | _        t          |j        d| j        dz
  z  z            | _	        t          |          | _        t          |          | _        t          j        | j	        |j                  | _        |rt          j        d          nd | _        |                                  d S )Nnattenr[   r   r   )rB   rC   r   rN   r   r$  r&  rx   rG   num_featuresr@   rS   r  encoderr   rF   r   	layernormAdaptiveAvgPool1dpooler	post_init)rM   rN   add_pooling_layerrO   s      r%   rC   zDinatModel.__init__  s       $
+++fm,, 0119L3M MNN)&11#F++d&7V=RSSS1BLb*1--- 	r'   c                     | j         j        S r    rS   rE   r   s    r%   get_input_embeddingszDinatModel.get_input_embeddings      //r'   c                     |                                 D ]/\  }}| j        j        |         j                            |           0dS )z
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        N)itemsrM  layerr   r   )rM   heads_to_prunerY  r   s       r%   _prune_headszDinatModel._prune_heads  sU    
 +0022 	C 	CLE5Lu%/;;EBBBB	C 	Cr'   vision)
checkpointoutput_typerE  modalityexpected_outputNrP   r   r+  r-  rQ   c                 <   ||n| j         j        }||n| j         j        }||n| j         j        }|t	          d          |                     |          }|                     ||||          }|d         }|                     |          }d }| j        R|                     |	                    dd          
                    dd                    }t          j	        |d          }|s||f|dd          z   }	|	S t          |||j        |j        |j                  S )Nz You have to specify pixel_valuesr   r+  r-  r   r   r[   )r,   r:   r-   r.   r/   )rN   r   r+  use_return_dictrd   rS   rM  rN  rP  flatten	transposer4   r9   r-   r.   r/   )
rM   rP   r   r+  r-  embedding_outputencoder_outputssequence_outputpooled_outputr   s
             r%   rT   zDinatModel.forward  sW    2C1N--TXT_Tq$8$D  $+Jj 	 &1%<kk$+B]?@@@??<88,,/!5#	 ' 
 
 *!,..99;" KK(?(?1(E(E(O(OPQST(U(UVVM!M-;;M 	%}58KKFM-')7&1#2#I
 
 
 	
r'   )T)NNNN)r0   r1   r2   rC   rU  r[  r   DINAT_INPUTS_DOCSTRINGr   _CHECKPOINT_FOR_DOCr9   _CONFIG_FOR_DOC_EXPECTED_OUTPUT_SHAPEr   r4   r5   r   r   r   rT   rV   rW   s   @r%   rI  rI    s       
     $0 0 0C C C +*+ABB&$$.   59,0/3&*,
 ,
u01,
 $D>,
 'tn	,

 d^,
 
u&&	',
 ,
 ,
  CB,
 ,
 ,
 ,
 ,
r'   rI  z
    Dinat Model transformer with an image classification head on top (a linear layer on top of the final hidden state
    of the [CLS] token) e.g. for ImageNet.
    c                        e Zd Z fdZ ee           eeee	e
          	 	 	 	 	 ddeej                 deej                 dee         dee         dee         d	eeef         fd
                        Z xZS )DinatForImageClassificationc                 b   t                                          |           t          | dg           |j        | _        t	          |          | _        |j        dk    r$t          j        | j        j        |j                  nt          j	                    | _
        |                                  d S )NrK  r   )rB   rC   r   
num_labelsrI  r9  r   r   rL  r   
classifierrQ  rL   s     r%   rC   z$DinatForImageClassification.__init__  s       $
+++ +''
 FLEVYZEZEZBIdj-v/@AAA`b`k`m`m 	
 	r'   )r]  r^  rE  r`  NrP   labelsr   r+  r-  rQ   c                    ||n| j         j        }|                     ||||          }|d         }|                     |          }d}	|Z| j         j        f| j        dk    rd| j         _        nN| j        dk    r7|j        t          j        k    s|j        t          j	        k    rd| j         _        nd| j         _        | j         j        dk    rWt                      }
| j        dk    r1 |
|                                |                                          }	n |
||          }	n| j         j        dk    rGt                      }
 |
|                    d| j                  |                    d                    }	n*| j         j        dk    rt                      }
 |
||          }	|s|f|dd         z   }|	|	f|z   n|S t          |	||j        |j        |j        	          S )
a  
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        Nrb  r   
regressionsingle_label_classificationmulti_label_classificationr   r[   )r=   r>   r-   r.   r/   )rN   rc  r9  rr  problem_typerq  r   r4   longrx   r
   squeezer	   r   r   r<   r-   r.   r/   )rM   rP   rs  r   r+  r-  r   ri  r>   r=   loss_fctr   s               r%   rT   z#DinatForImageClassification.forward  s   * &1%<kk$+B]**/!5#	  
 
  
//{'/?a''/;DK,,_q((flej.H.HFL\a\eLeLe/LDK,,/KDK,{'<77"99?a''#8FNN$4$4fnn6F6FGGDD#8FF33DD)-JJJ+--xB @ @&++b//RR)-III,..x// 	FY,F)-)9TGf$$vE)!/)#*#A
 
 
 	
r'   )NNNNN)r0   r1   r2   rC   r   rj  r   _IMAGE_CLASS_CHECKPOINTr<   rl  _IMAGE_CLASS_EXPECTED_OUTPUTr   r4   r5   
LongTensorr   r   r   rT   rV   rW   s   @r%   ro  ro    s             +*+ABB*.$4	   59-1,0/3&*<
 <
u01<
 )*<
 $D>	<

 'tn<
 d^<
 
u00	1<
 <
 <
  CB<
 <
 <
 <
 <
r'   ro  zBNAT backbone, to be used with frameworks like DETR and MaskFormer.c                        e Zd Z fdZd Z ee           eee	          	 	 	 dde
j        dee         dee         dee         d	ef
d
                        Z xZS )DinatBackbonec                 B   t                                                     t                                                     t          | dg           t	                    | _        t                    | _        j        gfdt          t          j                            D             z   | _        i }t          | j        | j                  D ]\  }}t!          j        |          ||<   t!          j        |          | _        |                                  d S )NrK  c                 D    g | ]}t          j        d |z  z            S )r[   )rx   rG   )r  r  rN   s     r%   r  z*DinatBackbone.__init__.<locals>.<listcomp>d  s.    1r1r1rST#f6FA6M2N2N1r1r1rr'   )rB   rC   _init_backboner   r@   rS   r  rM  rG   r  r   r$  rL  zip_out_featuresr  r   rF   
ModuleDicthidden_states_normsrQ  )rM   rN   r  stagerc   rO   s    `   r%   rC   zDinatBackbone.__init__\  s      v&&&$
+++)&11#F++#-.1r1r1r1rX]^abhbo^p^pXqXq1r1r1rr !#&t'94=#I#I 	D 	DE<)+l)C)C&&#%=1D#E#E  	r'   c                     | j         j        S r    rT  r   s    r%   rU  z"DinatBackbone.get_input_embeddingso  rV  r'   )r^  rE  NrP   r+  r   r-  rQ   c                    ||n| j         j        }||n| j         j        }||n| j         j        }|                     |          }|                     ||ddd          }|j        }d}t          | j        |          D ]\  }	}
|	| j	        v r|
j
        \  }}}}|
                    dddd                                          }
|
                    |||z  |          }
 | j        |	         |
          }
|
                    ||||          }
|
                    dddd                                          }
||
fz  }|s|f}|r||j        fz  }|S t!          ||r|j        nd|j        	          S )
aA  
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, AutoBackbone
        >>> import torch
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224")
        >>> model = AutoBackbone.from_pretrained(
        ...     "shi-labs/nat-mini-in1k-224", out_features=["stage1", "stage2", "stage3", "stage4"]
        ... )

        >>> inputs = processor(image, return_tensors="pt")

        >>> outputs = model(**inputs)

        >>> feature_maps = outputs.feature_maps
        >>> list(feature_maps[-1].shape)
        [1, 512, 7, 7]
        ```NT)r   r+  r,  r-  r7   r   r[   r   r   )feature_mapsr-   r.   )rN   rc  r+  r   rS   rM  r/   r  stage_namesout_featuresrj   rk   r   r   r  r-   r   r.   )rM   rP   r+  r   r-  rf  r   r-   r  r  hidden_stater  rc   rm   rn   r   s                   r%   rT   zDinatBackbone.forwardr  s   H &1%<kk$+B]$8$D  $+Jj 	 2C1N--TXT_Tq??<88,,/!%59  
 
  6#&t'7#G#G 	0 	0E<))):F:L7
L&%+33Aq!Q??JJLL+00Ve^\ZZ>t7>|LL+00VULYY+33Aq!Q??JJLL/ 	"_F# 37022M%3GQ'//T)
 
 
 	
r'   )NNN)r0   r1   r2   rC   rU  r   rj  r   r   rl  r4   rU   r   r   rT   rV   rW   s   @r%   r  r  W  s        
    &0 0 0 +*+ABB>XXX 04,0&*I
 I
lI
 'tnI
 $D>	I

 d^I
 
I
 I
 I
 YX CBI
 I
 I
 I
 I
r'   r  )rz   F)Kr3   r   dataclassesr   typingr   r   r   r4   torch.utils.checkpointr   torch.nnr   r	   r
   activationsr   modeling_outputsr   modeling_utilsr   pytorch_utilsr   r   utilsr   r   r   r   r   r   r   r   r   utils.backbone_utilsr   configuration_dinatr   natten.functionalr   r   
get_loggerr0   loggerrl  rk  rm  r|  r}  r+   r9   r<   ry   r@   rD   rp   rU   r   r   r   r   r   r   r   r   r   r   r  r  r8  DINAT_START_DOCSTRINGrj  rI  ro  r  r7   r'   r%   <module>r     s`   @ ?  ! ! ! ! ! ! ) ) ) ) ) ) ) ) ) )            A A A A A A A A A A ! ! ! ! ! ! . . . . . . - - - - - - Q Q Q Q Q Q Q Q
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2 1 1 1 1 1 , , , , , ,  /;;;;;;;;;/ / // / / 
	H	%	%   5 '  9 1  K K K K K K K K@  K  K  K  K  K{  K  K  KF  K  K  K  K  K  K  K  KF    bi   ,! ! ! ! !29 ! ! !H    ry   0 U\ e T V[Vb    *- - - - -BI - - -; ; ; ; ;BI ; ; ;|
 
 
 
 
") 
 
 
! ! ! ! !") ! ! !H    	   	 	 	 	 	") 	 	 	D D D D D D D DN, , , , , , , ,^C
 C
 C
 C
 C
29 C
 C
 C
L* * * * *? * * *.	  " e R
 R
 R
 R
 R
% R
 R
	 R
j   T
 T
 T
 T
 T
"6 T
 T
 T
n H b
 b
 b
 b
 b
(- b
 b
	 b
 b
 b
r'   