
    g4                         d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ dd	lmZ d
dlmZ  ej        e          Z G d de          Z G d de
          ZdS )zDETR model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)logging) verify_backbone_config_arguments   )CONFIG_MAPPINGc                        e Zd ZdZdZdgZdddZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d  fd	Zede	fd            Z
ede	fd            Zedefd            Z xZS )!
DetrConfigax  
    This is the configuration class to store the configuration of a [`DetrModel`]. It is used to instantiate a DETR
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the DETR
    [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        use_timm_backbone (`bool`, *optional*, defaults to `True`):
            Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`]
            API.
        backbone_config (`PretrainedConfig` or `dict`, *optional*):
            The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which
            case it will default to `ResNetConfig()`.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        num_queries (`int`, *optional*, defaults to 100):
            Number of object queries, i.e. detection slots. This is the maximal number of objects [`DetrModel`] can
            detect in a single image. For COCO, we recommend 100 queries.
        d_model (`int`, *optional*, defaults to 256):
            Dimension of the layers.
        encoder_layers (`int`, *optional*, defaults to 6):
            Number of encoder layers.
        decoder_layers (`int`, *optional*, defaults to 6):
            Number of decoder layers.
        encoder_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (`int`, *optional*, defaults to 2048):
            Dimension of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_ffn_dim (`int`, *optional*, defaults to 2048):
            Dimension of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        init_xavier_std (`float`, *optional*, defaults to 1):
            The scaling factor used for the Xavier initialization gain in the HM Attention map module.
        encoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        decoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        auxiliary_loss (`bool`, *optional*, defaults to `False`):
            Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
        position_embedding_type (`str`, *optional*, defaults to `"sine"`):
            Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
        backbone (`str`, *optional*, defaults to `"resnet50"`):
            Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
            will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
            is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
        use_pretrained_backbone (`bool`, *optional*, `True`):
            Whether to use pretrained weights for the backbone.
        backbone_kwargs (`dict`, *optional*):
            Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
            e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
        dilation (`bool`, *optional*, defaults to `False`):
            Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when
            `use_timm_backbone` = `True`.
        class_cost (`float`, *optional*, defaults to 1):
            Relative weight of the classification error in the Hungarian matching cost.
        bbox_cost (`float`, *optional*, defaults to 5):
            Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
        giou_cost (`float`, *optional*, defaults to 2):
            Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
        mask_loss_coefficient (`float`, *optional*, defaults to 1):
            Relative weight of the Focal loss in the panoptic segmentation loss.
        dice_loss_coefficient (`float`, *optional*, defaults to 1):
            Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
        bbox_loss_coefficient (`float`, *optional*, defaults to 5):
            Relative weight of the L1 bounding box loss in the object detection loss.
        giou_loss_coefficient (`float`, *optional*, defaults to 2):
            Relative weight of the generalized IoU loss in the object detection loss.
        eos_coefficient (`float`, *optional*, defaults to 0.1):
            Relative classification weight of the 'no-object' class in the object detection loss.

    Examples:

    ```python
    >>> from transformers import DetrConfig, DetrModel

    >>> # Initializing a DETR facebook/detr-resnet-50 style configuration
    >>> configuration = DetrConfig()

    >>> # Initializing a model (with random weights) from the facebook/detr-resnet-50 style configuration
    >>> model = DetrModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```detrpast_key_valuesd_modelencoder_attention_heads)hidden_sizenum_attention_headsTNr   d                    relu   皙?{Gz?      ?Fsineresnet50      r   c#                    |r|i }|rd|d<   g d|d<   ||d<   n|s|dv r|2t                               d           t          d         d	g
          }nLt          |t                    r7|                    d          }$t          |$         }%|%                    |          }d }d }t          |||||           || _        || _	        || _
        || _        || _        || _        || _        || _        |	| _        || _        |
| _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _         || _!        || _"        || _#        || _$        || _%        || _&        | | _'        |!| _(        |"| _)         tU                      j+        dd|i|# d S )N   output_stride)r"   r   r      out_indicesin_chans)Nr!   zX`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.resnetstage4)out_features
model_type)use_timm_backboneuse_pretrained_backbonebackbonebackbone_configbackbone_kwargsis_encoder_decoder ),loggerinfor   
isinstancedictget	from_dictr   r.   r1   num_channelsnum_queriesr   encoder_ffn_dimencoder_layersr   decoder_ffn_dimdecoder_layersdecoder_attention_headsdropoutattention_dropoutactivation_dropoutactivation_functioninit_stdinit_xavier_stdencoder_layerdropdecoder_layerdropnum_hidden_layersauxiliary_lossposition_embedding_typer0   r/   r2   dilation
class_cost	bbox_cost	giou_costmask_loss_coefficientdice_loss_coefficientbbox_loss_coefficientgiou_loss_coefficienteos_coefficientsuper__init__)'selfr.   r1   r;   r<   r>   r=   r   r@   r?   rA   rH   rI   r3   rE   r   rB   rC   rD   rF   rG   rK   rL   r0   r/   r2   rM   rN   rO   rP   rQ   rR   rS   rT   rU   kwargsbackbone_model_typeconfig_class	__class__s'                                         g/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/detr/configuration_detr.pyrW   zDetrConfig.__init__   s2   P  	!8 O 6350-9\\OM**6OJ''" 
	x3E'E'E&vwww"0":
"S"S"SOT22 J&5&9&9,&G&G#-.AB"."8"8"I"IHH(/$;++	
 	
 	
 	
 "3.(&.,'>$.,'>$!2"4#6  .!2!2!/,'>$ '>$. $""%:"%:"%:"%:".II,>I&IIIII    returnc                     | j         S N)r   rX   s    r]   r   zDetrConfig.num_attention_heads   s    ++r^   c                     | j         S ra   )r   rb   s    r]   r   zDetrConfig.hidden_size   s
    |r^   r1   c                      | dd|i|S )a-  Instantiate a [`DetrConfig`] (or a derived class) from a pre-trained backbone model configuration.

        Args:
            backbone_config ([`PretrainedConfig`]):
                The backbone configuration.
        Returns:
            [`DetrConfig`]: An instance of a configuration object
        r1   r4   r4   )clsr1   rY   s      r]   from_backbone_configzDetrConfig.from_backbone_config   s     s==?=f===r^   )"TNr   r   r   r   r   r   r   r   r   r   Tr   r   r   r   r   r   r   Fr    r!   TNFr"   r#   r   r"   r"   r#   r   r   )__name__
__module____qualname____doc__r-   keys_to_ignore_at_inferenceattribute_maprW   propertyintr   r   classmethodr   rf   __classcell__)r\   s   @r]   r   r       sX       d dL J#4"5 8 M  ! !" & $GgJ gJ gJ gJ gJ gJR ,S , , , X, S    X 	>3C 	> 	> 	> [	> 	> 	> 	> 	>r^   r   c                       e Zd Z ej        d          Zedeeee	ef         f         fd            Z
edefd            Zede	fd            ZdS )DetrOnnxConfigz1.11r_   c                 :    t          ddddddfdddifg          S )	Npixel_valuesbatchr;   heightwidth)r   r"   r   r   
pixel_maskr   r   rb   s    r]   inputszDetrOnnxConfig.inputs  s:    WHQX!Y!YZ7|,
 
 	
r^   c                     dS )Ngh㈵>r4   rb   s    r]   atol_for_validationz"DetrOnnxConfig.atol_for_validation  s    tr^   c                     dS )N   r4   rb   s    r]   default_onnx_opsetz!DetrOnnxConfig.default_onnx_opset  s    rr^   N)rg   rh   ri   r   parsetorch_onnx_minimum_versionrm   r   strrn   ry   floatr{   r~   r4   r^   r]   rr   rr     s        !.v!6!6
WS#X%6 67 
 
 
 X
 U    X C    X  r^   rr   N)rj   collectionsr   typingr   	packagingr   configuration_utilsr   onnxr	   utilsr
   utils.backbone_utilsr   autor   
get_loggerrg   r5   r   rr   r4   r^   r]   <module>r      s     # # # # # #             3 3 3 3 3 3             D D D D D D ! ! ! ! ! ! 
	H	%	%i> i> i> i> i>! i> i> i>X    Z     r^   