
    g?                         d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ  ej        e          Z G d	 d
e          Z G d de
          ZdS )zDeiT model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)loggingc                   D     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )
DeiTConfiga?  
    This is the configuration class to store the configuration of a [`DeiTModel`]. It is used to instantiate an DeiT
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the DeiT
    [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        encoder_stride (`int`, *optional*, defaults to 16):
            Factor to increase the spatial resolution by in the decoder head for masked image modeling.

    Example:

    ```python
    >>> from transformers import DeiTConfig, DeiTModel

    >>> # Initializing a DeiT deit-base-distilled-patch16-224 style configuration
    >>> configuration = DeiTConfig()

    >>> # Initializing a model (with random weights) from the deit-base-distilled-patch16-224 style configuration
    >>> model = DeiTModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```deit         gelu        {Gz?-q=      r   Tc                      t                      j        di | || _        || _        || _        || _        || _        || _        || _        || _	        |	| _
        |
| _        || _        || _        || _        || _        d S )N )super__init__hidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_eps
image_size
patch_sizenum_channelsqkv_biasencoder_stride)selfr   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   kwargs	__class__s                   g/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/deit/configuration_deit.pyr   zDeiTConfig.__init__Z   s    $ 	""6"""&!2#6 !2$#6 ,H)!2,$$( ,    )r   r   r   r   r   r   r   r   r   r   r   r   Tr   )__name__
__module____qualname____doc__
model_typer   __classcell__)r+   s   @r,   r   r      s{        7 7r J %(!- !- !- !- !- !- !- !- !- !-r-   r   c                       e Zd Z ej        d          Zedeeee	ef         f         fd            Z
edefd            ZdS )DeiTOnnxConfigz1.11returnc                 0    t          ddddddfg          S )Npixel_valuesbatchr&   heightwidth)r         r   r   r)   s    r,   inputszDeiTOnnxConfig.inputs   s.    WHQX!Y!YZ
 
 	
r-   c                     dS )Ng-C6?r   r>   s    r,   atol_for_validationz"DeiTOnnxConfig.atol_for_validation   s    tr-   N)r.   r/   r0   r   parsetorch_onnx_minimum_versionpropertyr   strintr?   floatrA   r   r-   r,   r5   r5   ~   s        !.v!6!6
WS#X%6 67 
 
 
 X
 U    X  r-   r5   N)r1   collectionsr   typingr   	packagingr   configuration_utilsr   onnxr	   utilsr
   
get_loggerr.   loggerr   r5   r   r-   r,   <module>rP      s      # # # # # #             3 3 3 3 3 3             
	H	%	%]- ]- ]- ]- ]-! ]- ]- ]-@    Z     r-   