
    g%                         d Z ddlmZ ddlmZmZmZmZ ddlm	Z	m
Z
mZ ddlmZ ddlmZmZ ddlmZ  ej        e          Z G d	 d
e          Z G d de          ZdS )zCodeGen model configuration    )OrderedDict)AnyListMappingOptional   )PreTrainedTokenizer
TensorTypeis_torch_available)PretrainedConfig)OnnxConfigWithPastPatchingSpec)loggingc                   Z     e Zd ZdZdZdddddZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )CodeGenConfiga  
    This is the configuration class to store the configuration of a [`CodeGenModel`]. It is used to instantiate a
    CodeGen model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the CodeGen
    [Salesforce/codegen-2B-mono](https://huggingface.co/Salesforce/codegen-2B-mono) architecture. Configuration objects
    inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from
    [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 50400):
            Vocabulary size of the CodeGen model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`CodeGenModel`].
        n_positions (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        n_ctx (`int`, *optional*, defaults to 2048):
            This attribute is used in `CodeGenModel.__init__` without any real effect.
        n_embd (`int`, *optional*, defaults to 4096):
            Dimensionality of the embeddings and hidden states.
        n_layer (`int`, *optional*, defaults to 28):
            Number of hidden layers in the Transformer encoder.
        n_head (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        rotary_dim (`int`, *optional*, defaults to 64):
            Number of dimensions in the embedding that Rotary Position Embedding is applied to.
        n_inner (`int`, *optional*):
            Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
        activation_function (`str`, *optional*, defaults to `"gelu_new"`):
            Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
        resid_pdrop (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        embd_pdrop (`int`, *optional*, defaults to 0.0):
            The dropout ratio for the embeddings.
        attn_pdrop (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
            The epsilon to use in the layer normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        bos_token_id (`int`, *optional*, defaults to 50256):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 50256):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
            model has a output word embedding layer.

    Example:

    ```python
    >>> from transformers import CodeGenConfig, CodeGenModel

    >>> # Initializing a CodeGen 6B configuration
    >>> configuration = CodeGenConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = CodeGenModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```codegenn_positionsn_embdn_headn_layer)max_position_embeddingshidden_sizenum_attention_headsnum_hidden_layers              @   Ngelu_new        h㈵>{Gz?TP  Fc                 0   || _         || _        || _        || _        || _        || _        || _        || _        |	| _        |
| _	        || _
        || _        || _        || _        || _        || _        || _         t#                      j        d|||d| d S )N)bos_token_ideos_token_idtie_word_embeddings )
vocab_sizen_ctxr   r   r   r   n_inner
rotary_dimactivation_functionresid_pdrop
embd_pdrop
attn_pdroplayer_norm_epsiloninitializer_range	use_cacher'   r(   super__init__)selfr+   r   r,   r   r   r   r.   r-   r/   r0   r1   r2   r3   r4   r5   r'   r(   r)   kwargs	__class__s                       m/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/codegen/configuration_codegen.pyr7   zCodeGenConfig.__init__f   s    , %
&$#6 &$$"4!2"(( 	
%LVi	
 	
ms	
 	
 	
 	
 	
    )r   r   r   r   r   r   r    Nr!   r"   r"   r"   r#   r$   Tr%   r%   F)__name__
__module____qualname____doc__
model_typeattribute_mapr7   __classcell__r:   s   @r;   r   r      s        > >@ J#0'&	 M &!'+
 +
 +
 +
 +
 +
 +
 +
 +
 +
r<   r   c                       e Zd Z	 	 	 ddededee         def fdZe	d	e
ee
eef         f         fd
            Ze	d	efd            Ze	d	efd            Z	 	 	 	 ddededededee         d	e
eef         f fdZe	d	efd            Z xZS )CodeGenOnnxConfigdefaultNFconfigtaskpatching_specsuse_pastc                     t                                          ||||           t          | j        dd           sd| j        _        d S d S )N)rI   rJ   rK   pad_token_idr   )r6   r7   getattr_configrM   )r8   rH   rI   rJ   rK   r:   s        r;   r7   zCodeGenOnnxConfig.__init__   sW     	d>T\]]]t|^T:: 	*()DL%%%	* 	*r<   returnc                     t          ddddi          }| j        r |                     |d           ddd|d<   nddd|d<   |S )	N	input_idsbatchsequence)r      inputs)	directionzpast_sequence + sequenceattention_mask)r   rK   fill_with_past_key_values_)r8   common_inputss     r;   rV   zCodeGenOnnxConfig.inputs   sp    #[g*2M2M$NOO= 	J++MX+NNN29>X.Y.YM*++29j.I.IM*+r<   c                     | j         j        S N)rO   r   r8   s    r;   
num_layerszCodeGenOnnxConfig.num_layers   s    |##r<   c                     | j         j        S r\   )rO   r   r]   s    r;   r   z%CodeGenOnnxConfig.num_attention_heads   s    |""r<   	tokenizer
batch_size
seq_lengthis_pair	frameworkc                 >   t          t          |                               |||||          }t          d|d         i          }| j        rwt                      st          d          dd l|d         j        \  }}	|	dz   }
|| j	        |
| j
        j        | j	        z  ffdt          | j                  D             |d<   |d         |d<   | j        rE|d         j        }                    |d                             ||
|	          gd
          |d<   |S )N)rb   rc   rd   re   rR   zACannot generate dummy past_keys inputs without PyTorch installed.r      c                 d    g | ],}                                                              f-S r*   )zeros).0_
past_shapetorchs     r;   
<listcomp>z;CodeGenOnnxConfig.generate_dummy_inputs.<locals>.<listcomp>   sC     5 5 5KLU[[,,ekk*.E.EF5 5 5r<   past_key_valuesrX   )dtyperU   )dim)r6   r   generate_dummy_inputsr   rK   r   
ValueErrorrm   shaper   rO   r   ranger^   rp   catones)r8   ra   rb   rc   rd   re   rZ   ordered_inputsrS   seqlenpast_key_values_length
mask_dtyperl   rm   r:   s               @@r;   rr   z'CodeGenOnnxConfig.generate_dummy_inputs   sw    0$77MM*W`i N 
 

 %k=3M%NOO = 	%''  !deee -k : @v)/!&,*L,0HH	
5 5 5 5 5PUVZVePfPf5 5 501 ,99I+J'(= 	'(89?J/4yy 015::eE[cm:3n3nouv 09 0 0N+, r<   c                     dS )N   r*   r]   s    r;   default_onnx_opsetz$CodeGenOnnxConfig.default_onnx_opset   s    rr<   )rG   NF)r`   r`   FN)r=   r>   r?   r   strr   r   boolr7   propertyr   intrV   r^   r   r	   r   r
   r   rr   r~   rC   rD   s   @r;   rF   rF      s        -1
* 
* 
* 
* \*	
*
 
* 
* 
* 
* 
* 
* WS#X%6 67    X $C $ $ $ X$ #S # # # X# *.* *&* * 	*
 * J'* 
c	* * * * * *X C    X    r<   rF   N)r@   collectionsr   typingr   r   r   r    r	   r
   r   configuration_utilsr   onnxr   r   utilsr   
get_loggerr=   loggerr   rF   r*   r<   r;   <module>r      s$   " ! # # # # # # / / / / / / / / / / / / C C C C C C C C C C 3 3 3 3 3 3 4 4 4 4 4 4 4 4       
	H	%	%t
 t
 t
 t
 t
$ t
 t
 t
pN N N N N* N N N N Nr<   