
    gQ                         d Z ddlZddlmZmZ er	 ddlmZ ddlmZ  ej	        e
          Z G d de          Z G d	 d
e          Z G d de          ZdS )zCLVP model configuration    N)TYPE_CHECKINGUnion   )PretrainedConfig)loggingc                        e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Ze	 ddeee	j
        f         deddfd            Z xZS )ClvpEncoderConfigak  
    This is the configuration class to store the configuration of a [`ClvpEncoder`]. It is used to instantiate a CLVP
    text or CLVP speech encoder according to the specified arguments. Instantiating a configuration with the defaults
    will yield a similar configuration to that of the encoder of the CLVP
    [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 256):
            Vocabulary size of the CLVP Encoder model.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 1536):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        projection_dim (`int`, *optional*, defaults to 768):
            Dimensionality of the projection vector.
        num_hidden_layers (`int`, *optional*, defaults to 20):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the feed-forward layers in [`ClvpEncoderMLP`].
        use_rotary_embedding (`bool`, *optional*, defaults to `True`):
            Whether to use rotary_embedding or not.
        use_attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use bias in Query, Key and Value layers during self attention.
        summary_type (`str`, *optional*, defaults to `"mean"`):
            What strategy to use to get pooler_output from the last_hidden_state. `"last"`, `"first"`, `"mean"` and
            `"cls_index"` are supported.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
            testing).
        bos_token_id (`int`, *optional*, defaults to 255):
            Beginning of sequence token id.
        eos_token_id (`int`, *optional*, defaults to 0):
            End of sequence token id.

    Example:

    ```python
    >>> from transformers import ClvpEncoderConfig, ClvpEncoder

    >>> # Initializing a ClvpEncoderConfig with susnato/clvp_dev style configuration
    >>> encoder_configuration = ClvpEncoderConfig()

    >>> # Initializing a ClvpEncoder (with random weights) from the susnato/clvp_dev style configuration
    >>> model = ClvpEncoder(encoder_configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```clvp_encoder               geluh㈵>皙?TFmean      ?   r   c                     || _         || _        || _        || _        || _        || _        || _        || _        || _        |	| _	        |
| _
        || _        || _        || _        || _        || _         t!                      j        d||d| d S N)bos_token_ideos_token_id )
vocab_sizehidden_sizeintermediate_sizeprojection_dimnum_hidden_layersnum_attention_headslayer_norm_eps
hidden_actinitializer_factorattention_dropoutdropoutuse_rotary_embeddinguse_attention_biassummary_typer   r   super__init__)selfr   r   r   r   r   r    r"   r!   r$   r%   r&   r'   r(   r#   r   r   kwargs	__class__s                     g/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/clvp/configuration_clvp.pyr*   zClvpEncoderConfig.__init___   s    ( %&!2,!2#6 ,$"4!2$8!"4(((XlXXQWXXXXX    text_configpretrained_model_name_or_pathconfig_typereturnr   c                 z   |                      |            | j        |fi |\  }}|dvrt          d|           |                    d          dk    r||         }d|v rMt	          | d          r=|d         | j        k    r,t                              d|d          d| j         d            | j        |fi |S )N)r0   speech_configzSWe can only load either 'text_config' or 'speech_config' but you are trying to load
model_typeclvpYou are using a model of type   to instantiate a model of type N. This is not supported for all configurations of models and can yield errors.)	_set_token_in_kwargsget_config_dict
ValueErrorgethasattrr6   loggerwarning	from_dict)clsr1   r2   r,   config_dicts        r.   from_pretrainedz!ClvpEncoderConfig.from_pretrained   s    	  (((1c12OZZSYZZV >>>wjuww  
 ??<((F22%k2K;&&73+E+E&+VbJcgjguJuJuNNr\1J r r>r r r  
 s}[33F333r/   )r   r   r   r   r   r   r   r   r   r   TFr   r   r   r   )r0   __name__
__module____qualname____doc__r6   r*   classmethodr   strosPathLikerE   __classcell__r-   s   @r.   r	   r	      s        ; ;z  J ! #%Y %Y %Y %Y %Y %YN Xe4 4,1#r{2B,C4RU4	4 4 4 [4 4 4 4 4r/   r	   c                        e Zd ZdZdZddddddd	d
ddddddddd	ddddddddg df fd	Zedeee	j
        f         ddfd            Z xZS )ClvpDecoderConfigaN  
    This is the configuration class to store the configuration of a [`ClvpDecoder`]. It is used to instantiate a CLVP
    Decoder Model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Decoder part of the CLVP
    [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    The architecture is similar to GPT2.

    Args:
        vocab_size (`int`, *optional*, defaults to 8194):
            Vocabulary size of the model.
        max_position_embeddings (`int`, *optional*, defaults to 608):
            The maximum sequence length of mel tokens that this model might ever be used with. Similar to `n_positions`
            in `GPT2Config`.
        max_text_tokens (`int`, *optional*, defaults to 404):
            The maximum sequence length of text tokens that this model might ever be used with. Similar to
            `n_positions` in `GPT2Config`.
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the embeddings and hidden states.
        num_hidden_layers (`int`, *optional*, defaults to 30):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        n_inner (`int`, *optional*):
            Dimensionality of the inner feed-forward layers. `None` will set it to 4 times `hidden_size`.
        num_mel_attn_blocks (`int`, *optional*, defaults to 6):
            Denotes the number of self attention layers in [`ClvpConditioningEncoder`].
        activation_function (`str`, *optional*, defaults to `"gelu_new"`):
            Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
        resid_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        embd_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the embeddings.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
            The epsilon to use in the layer normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        summary_type (`string`, *optional*, defaults to `"cls_index"`):
            Argument used when doing sequence summary.

            Has to be one of the following options:

                - `"last"`: Take the last token hidden state (like XLNet).
                - `"first"`: Take the first token hidden state (like BERT).
                - `"mean"`: Take the mean of all tokens hidden states.
                - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
                - `"attn"`: Not implemented now, use multi-head attention.
        summary_use_proj (`bool`, *optional*, defaults to `True`):
            Whether or not to add a projection after the vector extraction.
        summary_activation (`str`, *optional*):
            Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
        summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
            Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
        summary_first_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio to be used after the projection and activation.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        bos_token_id (`int`, *optional*, defaults to 8192):
            Beginning of sequence token id, used at the start of the generation.
        eos_token_id (`int`, *optional*, defaults to 8193):
            End of sequence token id, used in the method
            [`ClvpModelForConditionalGeneration.fix_speech_decoder_output()`] to correct decoder outputs.
        feature_size (`int`, *optional*, defaults to 80):
            The feature dimension of the extracted mel features. This value is used in [`ClvpConditioningEncoder`].
        use_attention_bias (`bool`, *optional*, defaults to `True`):
            Whether to use bias in Query, Key and Value layers during self attention.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
            testing).
        decoder_fixing_codes (`list`, *optional*, defaults to `[83, 45, 45, 248]`):
            These values are used in the method `fix_speech_decoder_output` to fix decoder generated outputs.

    Example:

    ```python
    >>> from transformers import ClvpDecoderConfig, ClvpDecoder

    >>> # Initializing a ClvpDecoderConfig with susnato/clvp_dev style configuration
    >>> decoder_configuration = ClvpDecoderConfig()

    >>> # Initializing a ClvpDecoder (with random weights) from the susnato/clvp_dev style configuration
    >>> model = ClvpDecoder(decoder_configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```clvp_decoderi   i`  i  i         N   gelu_newr   r   g{Gz?	cls_indexTi    i   P   r   )S   -   r[      c                    || _         || _        || _        || _        || _        || _        || _        || _        |	| _        |
| _	        || _
        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _        || _         t5                      j        d||d| d S r   )r   max_position_embeddingsmax_text_tokensr   r   r    n_innernum_mel_attn_blocksactivation_functionresid_pdrop
embd_pdropr$   layer_norm_epsiloninitializer_ranger(   summary_use_projsummary_activationsummary_first_dropoutsummary_proj_to_labels	use_cachefeature_sizer'   r#   decoder_fixing_codesr   r   r)   r*   )r+   r   r^   r_   r   r   r    r`   ra   rb   rc   rd   r$   re   rf   r(   rg   rh   rj   ri   rk   r   r   rl   r'   r#   rm   r,   r-   s                               r.   r*   zClvpDecoderConfig.__init__  s    < %'>$.&!2#6 #6 #6 &$!2"4!2( 0"4%:"&<#"("4"4$8!((XlXXQWXXXXXr/   r1   r3   r   c                 N   |                      |            | j        |fi |\  }}|                    d          dk    r|d         }d|v rMt          | d          r=|d         | j        k    r,t
                              d|d          d| j         d            | j        |fi |S )Nr6   r7   decoder_configr8   r9   r:   )r;   r<   r>   r?   r6   r@   rA   rB   )rC   r1   r,   rD   s       r.   rE   z!ClvpDecoderConfig.from_pretrained=  s      (((1c12OZZSYZZV ??<((F22%&67K;&&73+E+E&+VbJcgjguJuJuNNr\1J r r>r r r  
 s}[33F333r/   rF   rP   s   @r.   rR   rR      s        Z Zx  J  #& #!...7:Y :Y :Y :Y :Y :Yx 4E#r{BR<S 4bt 4 4 4 [4 4 4 4 4r/   rR   c                   \     e Zd ZdZdZdZ	 	 	 	 	 	 d fd	Zed	ed
ede	fd            Z
 xZS )
ClvpConfigaQ
  
    [`ClvpConfig`] is the configuration class to store the configuration of a [`ClvpModelForConditionalGeneration`]. It
    is used to instantiate a CLVP model according to the specified arguments, defining the text model, speech model and
    decoder model configs. Instantiating a configuration with the defaults will yield a similar configuration to that
    of the CLVP [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize the CLVP text encoder.
        speech_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize CLVP speech encoder.
        decoder_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`ClvpDecoderConfig`].
        projection_dim (`int`, *optional*, defaults to 768):
            Dimensionality of text and speech projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The initial value of the *logit_scale* parameter. Default is used as per the original CLVP implementation.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
            testing).
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import ClvpConfig, ClvpModelForConditionalGeneration

    >>> # Initializing a ClvpConfig with susnato/clvp_dev style configuration
    >>> configuration = ClvpConfig()

    >>> # Initializing a ClvpModelForConditionalGeneration (with random weights) from the susnato/clvp_dev style configuration
    >>> model = ClvpModelForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a CLVPConfig from a CLVPTextConfig, CLVPSpeechConfig and a CLVPAutoRegressiveConfig
    >>> from transformers import ClvpEncoderConfig, ClvpDecoderConfig

    >>> # Initializing a CLVP text, CLVP speech and CLVP decoder configuration
    >>> config_text = ClvpEncoderConfig()
    >>> config_speech = ClvpEncoderConfig()
    >>> decoder_config = ClvpDecoderConfig()

    >>> config = ClvpConfig.from_sub_model_configs(config_text, config_speech, decoder_config)
    ```r7   TNr   /L
F@r   c                 ~    t                      j        di | |i }t                              d           |i }t                              d           |i }t                              d           t	          di || _        t	          di || _        t          di || _        || _	        || _
        || _        d S )NzR`text_config` is `None`. Initializing the `ClvpEncoderConfig` with default values.zT`speech_config` is `None`. initializing the `ClvpEncoderConfig` with default values.zU`decoder_config` is `None`. initializing the `ClvpDecoderConfig` with default values.r   )r)   r*   r@   infor	   r0   r5   rR   ro   r   logit_scale_init_valuer#   )	r+   r0   r5   ro   r   ru   r#   r,   r-   s	           r.   r*   zClvpConfig.__init__  s     	""6"""KKKlmmm MKKnooo!NKKoppp,;;{;;.????/AA.AA,&<#"4r/   r0   r5   ro   c                      | d|                                 |                                 |                                 d|S )a  
        Instantiate a [`ClvpConfig`] (or a derived class) from CLVP text model configuration, CLVP speech model
        configuration and CLVP decoder model configuration.

        Args:
            text_config (`ClvpEncoderConfig`):
                Text model configuration of type [`ClvpEncoderConfig`].
            speech_config (`ClvpEncoderConfig`):
                Speech model configuration of type [`ClvpEncoderConfig`].
            decoder_config (`ClvpDecoderConfig`):
                Decoder model configuration of type [`ClvpDecoderConfig`].

        Returns:
            [`ClvpConfig`]: An instance of a configuration object
        )r0   r5   ro   r   )to_dict)rC   r0   r5   ro   r,   s        r.   from_sub_model_configsz!ClvpConfig.from_sub_model_configs  sY    0 s 
#++--'//11)1133
 
 	
 
 	
r/   )NNNr   rr   r   )rG   rH   rI   rJ   r6   is_compositionr*   rK   r	   rR   rx   rO   rP   s   @r.   rq   rq   P  s        1 1f JN %5 5 5 5 5 5@ 
&
 )
 *	
 
 
 [
 
 
 
 
r/   rq   )rJ   rM   typingr   r   configuration_utilsr   utilsr   
get_loggerrG   r@   r	   rR   rq   r   r/   r.   <module>r~      s     				 ' ' ' ' ' ' ' '  	 3 3 3 3 3 3       
	H	%	%@4 @4 @4 @4 @4( @4 @4 @4Fk4 k4 k4 k4 k4( k4 k4 k4\t
 t
 t
 t
 t
! t
 t
 t
 t
 t
r/   