
    gn                     F    d Z ddlZddlmZ ddlmZ  G d de          ZdS )z(
Image/Text processor class for CLIPSeg
    N   )ProcessorMixin)BatchEncodingc                   t     e Zd ZdZddgZdZdZd fd	ZddZd	 Z	d
 Z
ed             Zed             Z xZS )CLIPSegProcessora.  
    Constructs a CLIPSeg processor which wraps a CLIPSeg image processor and a CLIP tokenizer into a single processor.

    [`CLIPSegProcessor`] offers all the functionalities of [`ViTImageProcessor`] and [`CLIPTokenizerFast`]. See the
    [`~CLIPSegProcessor.__call__`] and [`~CLIPSegProcessor.decode`] for more information.

    Args:
        image_processor ([`ViTImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`CLIPTokenizerFast`], *optional*):
            The tokenizer is a required input.
    image_processor	tokenizerViTImageProcessor)CLIPTokenizerCLIPTokenizerFastNc                    d }d|v r/t          j        dt                     |                    d          }||n|}|t	          d          |t	          d          t                                          ||           d S )Nfeature_extractorzhThe `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor` instead.z)You need to specify an `image_processor`.z"You need to specify a `tokenizer`.)warningswarnFutureWarningpop
ValueErrorsuper__init__)selfr   r	   kwargsr   	__class__s        j/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/clipseg/processing_clipseg.pyr   zCLIPSegProcessor.__init__+   s     &((M  
 !'

+> ? ?-<-H//N_"HIIIABBB)44444    c                 `   |||t          d          ||t          d          | | j        |fd|i|}| | j        |fd|i|}| | j        |fd|i|}|||j        |j        d}|S |||j        |d<   |S ||S |d|j        i}|S t	          t          d	i ||          S )
a
  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        ViTImageProcessor's [`~ViTImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of
        the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            visual_prompt (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The visual prompt image or batch of images to be prepared. Each visual prompt image can be a PIL image,
                NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape
                (C, H, W), where C is a number of channels, H and W are image height and width.

            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        Nz9You have to specify either text, visual prompt or images.zMYou have to specify exactly one type of prompt. Either text or visual prompt.return_tensors)pixel_valuesconditional_pixel_valuesr   r   )datatensor_type )r   r	   r   r   r   dict)	r   textimagesvisual_promptr   r   encodingprompt_featuresimage_featuress	            r   __call__zCLIPSegProcessor.__call__=   s<   L <M1fnXYYY 9lmmm%t~dTT>TVTTH$2d2=jjQ_jcijjO1T1&bbb[abbN$); . ;,;,H H O&"4'5'BH^$OO&*O,HH O d&<&<^&<&<.YYYYr   c                 &     | j         j        |i |S )z
        This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r	   batch_decoder   argsr   s      r   r+   zCLIPSegProcessor.batch_decode   s    
 +t~*D;F;;;r   c                 &     | j         j        |i |S )z
        This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r	   decoder,   s      r   r/   zCLIPSegProcessor.decode   s    
 %t~$d5f555r   c                 D    t          j        dt                     | j        S )Nzg`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.)r   r   r   image_processor_classr   s    r   feature_extractor_classz(CLIPSegProcessor.feature_extractor_class   s'    u	
 	
 	
 ))r   c                 D    t          j        dt                     | j        S )Nz[`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.)r   r   r   r   r2   s    r   r   z"CLIPSegProcessor.feature_extractor   s'    i	
 	
 	
 ##r   )NN)NNNN)__name__
__module____qualname____doc__
attributesr1   tokenizer_classr   r)   r+   r/   propertyr3   r   __classcell__)r   s   @r   r   r      s          $[1J/<O5 5 5 5 5 5$FZ FZ FZ FZP< < <6 6 6 * * X* $ $ X$ $ $ $ $r   r   )r8   r   processing_utilsr   tokenization_utils_baser   r   r!   r   r   <module>r?      s|      . . . . . . 4 4 4 4 4 4H$ H$ H$ H$ H$~ H$ H$ H$ H$ H$r   