
    g                     ^    d Z ddlmZ ddlmZ  ej        e          Z G d de          ZdS )zCANINE model configuration   )PretrainedConfig)loggingc                   N     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )CanineConfiga  
    This is the configuration class to store the configuration of a [`CanineModel`]. It is used to instantiate an
    CANINE model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the CANINE
    [google/canine-s](https://huggingface.co/google/canine-s) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the deep Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoders.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoders.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoders, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 16384):
            The maximum sequence length that this model might ever be used with.
        type_vocab_size (`int`, *optional*, defaults to 16):
            The vocabulary size of the `token_type_ids` passed when calling [`CanineModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 57344):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 57345):
            End of stream token id.
        downsampling_rate (`int`, *optional*, defaults to 4):
            The rate at which to downsample the original character sequence length before applying the deep Transformer
            encoder.
        upsampling_kernel_size (`int`, *optional*, defaults to 4):
            The kernel size (i.e. the number of characters in each window) of the convolutional projection layer when
            projecting back from `hidden_size`*2 to `hidden_size`.
        num_hash_functions (`int`, *optional*, defaults to 8):
            The number of hash functions to use. Each hash function has its own embedding matrix.
        num_hash_buckets (`int`, *optional*, defaults to 16384):
            The number of hash buckets to use.
        local_transformer_stride (`int`, *optional*, defaults to 128):
            The stride of the local attention of the first shallow Transformer encoder. Defaults to 128 for good
            TPU/XLA memory alignment.

    Example:

    ```python
    >>> from transformers import CanineConfig, CanineModel

    >>> # Initializing a CANINE google/canine-s style configuration
    >>> configuration = CanineConfig()

    >>> # Initializing a model (with random weights) from the google/canine-s style configuration
    >>> model = CanineModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```canine         gelu皙? @     {Gz?-q=                  c                 "    t                      j        d|||d| || _        || _        || _        || _        || _        || _        || _        || _	        |
| _
        |	| _        || _        || _        || _        || _        || _        || _        d S )N)pad_token_idbos_token_ideos_token_id )super__init__max_position_embeddingshidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangetype_vocab_sizelayer_norm_epsdownsampling_rateupsampling_kernel_sizenum_hash_functionsnum_hash_bucketslocal_transformer_stride)selfr   r    r!   r"   r#   r$   r%   r   r'   r&   r(   r   r   r   r)   r*   r+   r,   r-   kwargs	__class__s                        k/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/canine/configuration_canine.pyr   zCanineConfig.__init__`   s    . 	sl\hsslrsss'>$&!2#6 !2$#6 ,H)!2., "3&<#"4 0(@%%%    )r   r	   r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   )__name__
__module____qualname____doc__
model_typer   __classcell__)r0   s   @r1   r   r      s        C CJ J %( % !$)*A *A *A *A *A *A *A *A *A *Ar2   r   N)	r6   configuration_utilsr   utilsr   
get_loggerr3   loggerr   r   r2   r1   <module>r=      s    !   3 3 3 3 3 3       
	H	%	%rA rA rA rA rA# rA rA rA rA rAr2   