# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING

from ...utils import (
    OptionalDependencyNotAvailable,
    _LazyModule,
    is_sentencepiece_available,
    is_tf_available,
    is_tokenizers_available,
    is_torch_available,
)


_import_structure = {
    "configuration_camembert": ["CamembertConfig", "CamembertOnnxConfig"],
}

try:
    if not is_sentencepiece_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["tokenization_camembert"] = ["CamembertTokenizer"]

try:
    if not is_tokenizers_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["tokenization_camembert_fast"] = ["CamembertTokenizerFast"]

try:
    if not is_torch_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["modeling_camembert"] = [
        "CamembertForCausalLM",
        "CamembertForMaskedLM",
        "CamembertForMultipleChoice",
        "CamembertForQuestionAnswering",
        "CamembertForSequenceClassification",
        "CamembertForTokenClassification",
        "CamembertModel",
        "CamembertPreTrainedModel",
    ]

try:
    if not is_tf_available():
        raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
    pass
else:
    _import_structure["modeling_tf_camembert"] = [
        "TFCamembertForCausalLM",
        "TFCamembertForMaskedLM",
        "TFCamembertForMultipleChoice",
        "TFCamembertForQuestionAnswering",
        "TFCamembertForSequenceClassification",
        "TFCamembertForTokenClassification",
        "TFCamembertModel",
        "TFCamembertPreTrainedModel",
    ]


if TYPE_CHECKING:
    from .configuration_camembert import CamembertConfig, CamembertOnnxConfig

    try:
        if not is_sentencepiece_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .tokenization_camembert import CamembertTokenizer

    try:
        if not is_tokenizers_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .tokenization_camembert_fast import CamembertTokenizerFast

    try:
        if not is_torch_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .modeling_camembert import (
            CamembertForCausalLM,
            CamembertForMaskedLM,
            CamembertForMultipleChoice,
            CamembertForQuestionAnswering,
            CamembertForSequenceClassification,
            CamembertForTokenClassification,
            CamembertModel,
            CamembertPreTrainedModel,
        )

    try:
        if not is_tf_available():
            raise OptionalDependencyNotAvailable()
    except OptionalDependencyNotAvailable:
        pass
    else:
        from .modeling_tf_camembert import (
            TFCamembertForCausalLM,
            TFCamembertForMaskedLM,
            TFCamembertForMultipleChoice,
            TFCamembertForQuestionAnswering,
            TFCamembertForSequenceClassification,
            TFCamembertForTokenClassification,
            TFCamembertModel,
            TFCamembertPreTrainedModel,
        )

else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
